
ELECTRICAL CIRCUIT ANALYSIS AND 
SYNTHESIS 

Lecture Notes (MR20) 
 
 

Prepared By 

Y.SUDHA 

Assistant Professor, Department of EEE 
 
 
 
 

 
Department of Electrical & Electronics Engineering 

Malla Reddy Engineering College (Autonomous) 

Maisammaguda, Dhullapally, Secunderabad-500100 



 
 
 
 

ELECTRICAL CIRCUIT ANALYSIS AND SYNTHESIS 

 
Course Objectives: This course deals about the network theorems and three 
phase circuits. It also emphasis on network parameters, synthesis and transient 
analysis of electrical network. It is the foundation for all courses of the Electrical 
and Electronics Engineering discipline. 
MODULE I:Network Theorems and Magnetic Circuits 

Superposition, Reciprocity, Thevenin‘s, Norton‘s, Maximum Power Transfer, 

Millman‘s and Compensation and Tellegen‘s theorems - Statement of theorems 

and numerical problems in DC and AC Networks. 

Magnetic Circuits – Faraday‘s laws of electromagnetic induction – concept of self 

and mutual inductance – dot convention – coefficient of coupling – composite 

magnetic circuit - Analysis of series and parallel magnetic circuits. Hysteresis 

and Eddy currents. 

MODULEII: Resonance and Three Phase Circuits: 

Resonance – Series & parallel circuits, concept of bandwidth and Q factor. 

Locus diagrams: Series R-L, R-C, R-L-C Circuits. 

Three Phase Circuits: Introduction to three phase circuits – types of connection 

- Star and delta– Relation between line and phase voltages and currents in 

balanced systems 

– Analysis of balanced and Unbalanced three phase circuits. 

MODULE III:Two Port Network Parameters 

Open circuit impedance (Z) network parameters, Short circuit admittance(Y) 

network parameters –Transmission (ABCD) Inverse Transmission (A1B1C1D1) and 

Hybrid parameters – Relationship between two port network parameters – Reciprocity 

and Symmetry concepts of two port network parameters. 

MODULEIV: Transient Analysis (Both AC & DC Networks 

Introduction - Initial conditions of all elements-Transient response of Series R-L, 

R- C and R-L-C circuits (Independent Sources Only) – Solution using Laplace 

transform approach. 

MODULEV: Network Synthesis 
Hurwitz Polynomials, Positive Real Functions, Frequency Response of Reactive 
One-Port network, Synthesis of Reactive One Port by Fosters Method, 
Synthesis of Reactive One Port By Cauer Method, Synthesis of RL, RC and LC 
One Port 
Networks by Foster and Cauer Methods. 



MODULE I 
Network Theorems and Magnetic Circuits 

 
Network Theorems Introduction 
Network theorems are also can be termed as network reduction techniques. Each and every theorem 
got its importance of solving network. Let us see some important theorems with DC and AC 
excitation with detailed procedures. 
Electric circuit theorems are always beneficial to help find voltage and currents in multi loop circuits. 
These theorems use fundamental rules or  formulas  and  basic  equations  of  mathematics  to  
analyze basic components of electrical or electronics parameters such as voltages, currents, 
resistance, and so on. These fundamental theorems include the basic theorems like Superposition 
theorem, Tellegen’s theorem, Norton’s theorem, Maximum power transfer theorem and Thevenin’s 
theorems. 
Other group of network theorems which are mostly used in the circuit analysis process includes 
Compensation theorem, Substitution theorem, Reciprocity theorem, Millman’s theorem and Miller’s 
theorem. 

 
SUPERPOSITION THEOREM: 

 
Statement: In an any linear, bi-lateral network consisting number of sources, response in any 
element (resistor) is given as sum of the individual responses due to individual sources, while 
other sources are non-operative” 

 
Eg: Let V = 6v, I = 3A, R1 = 8 ohms and R2 = 4 ohms Let us find current through 4 ohms using V 

source, while I is zero. Then equivalent circuit is 
 

 
 
 
 



Let i1 is the current through 4 ohms, i1 = V / (R1+R2) 
 

Let us find current through 4 ohms using I source, while V is zero. Then equivalent circuit is 

 
Let i2 is the current through 4 ohms, i2 = I. R1 / (R1+R2) 

 

Hence total current through 4 ohms is = I1+I1 (as both currents are in same direction or otherwise I1- 
I2) 

Let V = 6v, I = 3A, Z1 = 8 ohms and Z2 = 4 ohms 

Let us find current through 4 ohms using V source, while I is zero. then equivalent circuit is 

Let i1 is the current through 4 ohms, i1 = V / (Z1+Z2) 

Let us find current through 4 ohms using I source, while V is zero.then equivalent circuit is 
 
 



Let i2 is the current through 4 ohms, i2 = I. Z1 / (Z1+Z2) 
 

Hence total current through 4 ohms is = I1+I1( as both currents are in same direction or 
otherwiseI1-I2). 

 
RECIPROCITY THEOREM: 

Statement: In any linear bi-lateral network ratio of voltage in one mesh to current in other mesh is same 
even if their positions are inter-changed. 

 

 
Eg: Find the total resistance of the circuit, Rt = R1+ [R2(R3+Rl)] / R2+R3+RL. Hence 

source current, I = V1 / Rt. 

Current through RL is I1 = I. R2 / (R2+R3+RL) Take the 

ratio of, V1 / I1 

Draw the circuit by inter changing position of V1 and I1 
 
 

 

Eg: Find the total resistance of the circuit, Rt = (R3+RL) + [R2(Rl)] / R2+R1. Hence 

source current, I = V1 / Rt. 

Current through RL is I1 = I. R2 / (R2+R1) Take the 

ratio of , V1 / I1 ---2 

If ratio 1 = ratio 2, then circuit is said to be satisfy reciprocity. 



THEVENIN’S THEOREM: 
 

Statement: An complex network consisting of number voltage and current sources cand be replaced by 
simple series circuit consisting of equivalent voltage source in series with equivalent resistance, where 
equivalen voltage is called as open circuit voltage and equivalent resistance is called as thevenin‘s 
resistance calculated across open circuit terminals while all energy sources are non-operative 

 
Eg: Here we need to find current through RL using thevenin‘s theorem. Open circuit the AB 
terminals to find the Thevenin‘s voltage.Thevenin‘svoltage , Vth = E1. R3/ (R1+R3)from 
figure.1 Thevenin‘s resistance, Rth = (R1.R3)/ (R1+R3) + R2 2 from figure 2. 

 

Now draw the thevenin‘s equivalent circuit as shown in figure 3 with calculated values. 
 

 

NORTON’S THEOREM: 
Statement: A complex network consisting of number voltage and current sources cand be replaced by 
simple parallel circuit consisting of equivalent current source in parallel with equivalent resistance, where 
equivalent current source is called as short circuit current and equivalent resistance is called as Norton‘s 
resistance calculated across open circuit terminals while all energy sources are non-operative 
Example: 
Here we need to find current through RL using Norton‘s theorem. Short circuit the AB terminals to find 
the Norton are current. 
Total resistance of circuit is, Rt = (R2.R3) / (R2+R3) + R1 Source current, I = E / Rt 
Norton‘s current, IN = I. R3 / (R2+R3) ----1 from figure .1 

 
Norton‘s resistance, RN = (R1.R3)/ (R1+R3)+R2 2 from figure2. 
Now draw the Norton‘s equivalent circuit as shown in figure 3 with calculated values. 

 
MAXIMUM POWER TRANSFER THEOREM: 



Statement: In linear bi-lateral network maximum power can be transferred from source to load if load 
resistance is equal to source or thevenin‘s or internal resistances 

 
Eg: For the below circuit explain maximum power transfer theorem. 

 
 
 

Let I be the source current, I = V / (R1+R2) Power absorbed by load resistor is, 
PL = I2 .R2 

= [ V / (R1+R2)]2 .R2. 
To say that load resistor absorbed maximum power ,dPL / dR2 = 0. 
When we solve above condition we get, R2 = R1. 
Hence maximum power absorbed by load resistor is, PLmax = V2 / 4R2. 

 
MILLIMAN’S THEOREM: 

 
Statement: An complex network consisting of number of parallel branches , where each parallel branch 
consists of voltage source with series resistance, can be replaced with equivalent circuit consisting of 
one voltage source in series with equivalent resistance‖ 

 

 
Where equivalent voltage source value is, 
V=(V1G1+V2G2+ ------- +VnGn) 
G1+G2+  Gn 

Equivalent resistance is ,R‘=1 /(G1+G2+Gn) 

 
COMPENSATION THEOREM: 

Statement: States that any element in the network can be replaced with Voltage source whose value is 
product of current through that element and its value‖ It is useful in finding change in current when 
sudden change in resistance value. 



 
 
 
 
 

 

s 
 

For the above circuit source current is given as, I = V / (R1+R2) Element R2 can be replaced 
with voltage source of, V = I.R2 
Let us assume there is change in R2 by ΔR, now source current is I‘= V / (R1+R2+ ΔR) Hence 
actual change in current from original circuit to present circuit is = I – I‘. 
This can be find using compensation theorem as, making voltage source non-operative and replacing ΔR 
with voltage source of I‘. ΔR. 

Then change in current is given as = I‘. ΔR / (R1+R2) 

 
TELLEGENS THEOREM 

Dutch Electrical Engineer Bernard D.H. Tellegen has introduced this theorem in the year of 1952. This is 

a very useful theorem in network analysis. According to Tellegen theorem, the summation of 

instantaneous powers for the n number of branches in an electrical network is zero. Are you confused? 

Let's explain. Suppose n number of branches in an electrical network have i1, i2, i3, in respective 

instantaneous currents through them. These currents satisfy Kirchhoff's Current Law. Again, suppose 

these branches have instantaneous voltages across them are v1,v2,v3, vn respectively. Ifthese 

 

 
Voltages across these elements satisfy Kirchhoff Voltage Law then, vk is the instantaneous voltage 

across the kth branch and ik is the instantaneous current flowing through this branch. 

Tellegen theorem is applicable mainly in general class of lumped network s that consist of linear, non- 

linear, active, passive, 

 

time variant and time variant elements. This theorem can easily be explained by the following example. 



 

 

In the network shown, arbitrary reference directions have been selected for all of the branch currents, and 

the corresponding branch voltages have been indicated, with positive reference direction at the tail of the 

current arrow. 

For this network, we will assume a set of branch voltages satisfy the Kirchhoff voltage law and a set of 

branch current satisfy Kirchhoff current law at each node. We will then show that these arbitrary 

assumed 

 

Voltages and currents satisfy the equation. And it is the condition of Tellegen theorem. In the network 

shown in the figure, let v1, v2 and v3 be 7, 2 and 3 volts respectively. Applying Kirchhoff voltage law 

around loop ABCDEA. We see that v4 = 2 volt is required. Around loop CDFC, v5 is required to be 3 

volt and around loop DFED, v6 is required to be 2. We next apply Kirchhoff current law successively to 

nodes B, C and D. At node B let ii= 5 A, then it is required that i2 = − 5 A. At node C let i3 = 3 A and 

then i5 is required to be − 8. At node D assume i4 to be 4then 

 
i6is required to be − 9. Carrying out the operation of equation, we get, 

Hence Tellegen theorem is verified. 



Magnetic Circuits 
 

Magnetic fields are the fundamental medium through which energy is converted from one form 
to another in motors, generators and transformers. Four basic principles describe how magnetic 
fields are used in these devices. 

1. A current-carrying conductor produces a magnetic field in the area around it. 

Explained in Detail by Fleming’s Right hand rule and Amperes Law. 
2. A time varying magnetic flux induces a voltage in a coil of wire if it passes through that 

coil.(basis of Transformer action). Explained in detail by the Faradays laws of Electromagnetic 
Induction. 

3. A current carrying conductor in the presence of a magnetic field has a force induced in it 
( Basis of Motor action) 

4. A moving wire in the presence of a magnetic field has a voltage induced in it ( Basis of 
Generator action) 

Two basic laws governing the production of a magnetic field by a current carrying conductor : 

The direction of the magnetic field produced by a current carrying conductor is given by the 
Flemings Right hand rule and its’ amplitude is given by the Ampere’s Law. 

 
Flemings right hand rule: 
Hold the conductor carrying the current in your right hand such that the Thumb points along the 
wire in the direction of the flow of current, then the fingers will encircle the wire along the lines of 

the Magnetic force 
 

Ampere’s Law : 
The line integral of the magnetic field intensity H around a closed magnetic path is equal to the 
total current enclosed by the path. 
This is the basic law which gives the relationship between the Magnetic field Intensity H and the 
current I and is mathematically expressed as 

∮�. �� = I net 
Where H is the magnetic field intensity produced by the current I net and dl is a differential 
element of length along the path of integration. H is measured in Ampere-turns per meter. 

Important parameters and their relation in magnetic circuits : 

 Consider a current carrying conductor wrapped around a ferromagnetic core as shown in 
the figure below. 



 

 Applying Ampere’s law, the total amount of magnetic field induced will be proportional 
to the amount of current flowing through the conductor wound with N turns around the 
ferromagnetic material as shown. Since the core is made of ferromagnetic material, it is 
assumed that a majority of the magnetic field will be confined to the core. 

 The path of integration in this case as per the Ampere’s law is the mean path length of the 
core, lC. The current passing within the path of integration Inet is then Ni, since the coil 
of wire cuts the path of integration N times while carrying the current i. Hence Ampere’s 
Law becomes: Hlc =Ni 
Therefore 

H =Ni/lc 
 

 In this sense, H (Ampere turns per meter) is known as the effort required to induce a 
magnetic field. The strength of the magnetic field flux produced in the core also depends 
on the material of the core. Thus: B = µH 
Where, 
B = magnetic flux density [webers per square meter, or Tesla (T)] 
μ= magnetic permeability of material (Henrys per meter) 
H = magnetic field intensity (ampere-turns per meter) 

 The constant µ may be further expanded to include relative permeability which can be 
defined as below: 
µr =µ/µo 
where ,µo = permeability of free space (equal to that of air) 

 
 Hence the permeability value is a combination of the relative permeability and the 

permeability of free space. The value of relative permeability is dependent upon the type 
of material used. The higher the amount permeability, the higher the amount of flux 
induced in the core. Relative permeability is a convenient way to compare the magnetic 
ability of materials. 

 
 Also, because the permeability of iron is so much higher than that of air, the majority of 

the flux in an iron core remains inside the core instead of travelling through the 
surrounding air, which has lower permeability. The small leakage flux that does leave the 
iron core is important in determining the flux linkages between coils and the self- 
inductances of coils in transformers and motors. 

 In a core such as shown in the figure above 

B = µH = µ Ni/lc 
Now, to measure the total flux flowing in the ferromagnetic core, consideration has to 
be made in terms of its cross sectional area (CSA). Therefore: 



Φ = ∫ �. ��where: A = cross sectional area throughout the core. 
Assuming that the flux density in the ferromagnetic core is constant through out hence 
the equation simplifies to: 

Φ = B.A 
Taking the previous expression for B 
we get Φ = µNiA/l 

Electrical analogy of magnetic circuits: 
The flow of magnetic flux induced in the ferromagnetic core is analogous to the flow of electric 
current in an electrical circuit hence the name magnetic circuit. 

 
The analogy is as follows: 

 

 

(a) Electric Circuit (b) Electrical Analogy of Magnetic Circuit 
 

 Referring to the magnetic circuit analogy, F is denoted as magneto motive force (mmf) 
which is similar to Electromotive force in an electrical circuit (emf). Therefore, we can 
say that F is the force which pushes magnetic flux around a ferromagnetic core with a 
value of Ni (refer to ampere’s law). Hence F is measured in ampere turns. Hence the 
magnetic circuit equivalent equation is a shown: 

F = Ø.R (similar to V=IR) 
We already have the relation Φ = µ NiA/l and using this we get R = F / Φ = Ni/ Φ 

R = Ni /( µ NiA/l) = l/ µ A 
 The polarity of the mmf will determine the direction of flux. To easily determine the 

direction of flux, the ‘right hand curl’ rule is applied: 

When the direction of the curled fingers indicates the direction of current flow the 
resulting thumb direction will show the magnetic flux flow. 

 The element of R in the magnetic circuit analogy is similar in concept to the electrical 
resistance. It is basically the measure of material resistance to the flow of magnetic flux. 
Reluctance in this analogy obeys the rule of electrical resistance (Series and Parallel 
Rules). Reluctance is measured in Ampere-turns per Weber. 

 The inverse of electrical resistance is conductance which is a measure of conductivity of 
a material. Similarly the inverse of reluctance is known as permeance P which represents 
the degree to which the material permits the flow of magnetic flux. 

 By using the magnetic circuit approach, calculations related to the magnetic field in a 
ferromagnetic material are simplified but with a little in accuracy 

Equivalent   Reluctance of a series Magnetic circuit: Req series=R1 + R2 + R3 +…. 



Equivalent Reluctance of a Parallel Magnetic circuit: 1/Req parallel=1/R1 + 1/R2 + 1/R3 +…. 

 

Electromagnetic Induction and Faraday’s law Induced Voltage from a Time- 
Changing Magnetic Field: 
Faraday’s Law: 

Whenever a varying magnetic flux passes through a turn of a coil of wire, voltage will be 
induced in the turn of the wire that is directly proportional to the rate of change of the flux 
linkage with the turn of the coil of wire. 

Eind∝ −dØ/dt 
Eind=−�. dØ/dt 

The negative sign in the equation above is in accordance to Lenz’ Law which states: 
The direction of the induced voltage in the turn of the coil is such that if the coil is short 
circuited, it would produce a current that would cause a flux which opposes the original change 
of flux. 
And k is the constant of proportionality whose value depends on the system of units chosen. In 
the SI system of units k=1 and the above equation becomes: 

E ind= − dØ/dt 
Normally a coil is used with several turns and if there are N number of turns in the coil with the 
same amount of flux flowing through it then: 

E ind = − �dØ/dt 

Change in the flux linkage NØ of a coil can be obtained in two ways: 
 

1. Coil remains stationary and flux changes with time (Due to AC current like in 

Transformers and this is called Statically induced e.m.f 

2. Magnetic flux remains constant and stationary in space, but the coil moves relative to the 

magnetic field so as to create a change in the flux linkage of the coil ( Like in Rotating 

machines and this is a called Dynamically induced e.m.f. 

Self inductance: 
From the Faradays laws of Electromagnetic Induction we have seen that an e.m.f will be induced 
in a conductor when a time varying flux is linked with a conductor and the amplitude of the 
induced e.m.f is proportional to the rate of change of the varying flux. 
If the time varying flux is produced by a coil of N turns then the coil itself links with the time 
varying flux produced by itself and an emf will be induced in the same coil. This is called self 
inductance . 
The flux Ø produced by a coil of N turns links with its own N turns of the coil and hence the 

total flux linkage is equal to NØ = (μ N2 A / l) I [using the expression Φ = µ NiA/l we already 

developed] Thus we see that the total magnetic flux produced by a coil of N turns and linked 

with itself is proportional to the current flowing through the coil i.e. 

NØ ∝or   NØ  = L � 
From the Faradays law of electromagnetic Induction, the self induced e.m.f for this coil of N 
turns is given by: 

E ind= − � dØ/dt = −L dI/dt 



The constant of proportionality L is called the self Inductance of the coil or simply Inductance 

and its value is given by L = (μ N2 A / l). If the radius of the coil is r then: 
L = (μ N2 πr2 / l) i 

From the above two equations we can see that Self Inductance of a coil can be defined as the flux 
produced per unit current i.e Weber /Ampere (equation1) or the induced emf per unit rate of 
change of current i.e Volt-sec/Ampere (equation 2 ) 
The unit of Inductance is named after Joseph Henry as Henry and is given to these two 
combinations as : 
1H = 1WbA-1 = 1VsA-1 
Self Inductance of a coil is defined as one Henry if an induced emf of one volt is generated when 
the current in the coil changes at the rate of one Ampere per second. 
Henry is relatively a very big unit of Inductance and we normally use Inductors of the size of 

mH( 10-3 H) or μH (10-3H) 

Mutual inductance and Coefficient of coupling: 
In the case of Self Inductance an emf is induced in the same coil which produces the varying 
magnetic field. The same phenomenon of Induction will be extended to a separate second coil if 
it is located in the vicinity of the varying magnetic field produced by the first coil. Faradays law 
of electromagnetic Induction is equally applicable to the second coil also. A current flowing in 
one coil establishes a magnetic flux about that coil and also about a second coil nearby but of 
course with a lesser intensity. The time-varying flux produced by the first coil and surrounding 
the second coil produces a voltage across the terminals of the second coil. This voltage is 
proportional to the time rate of change of the current flowing through the first coil. 
Figure (a) shows a simple model of two coils L1 and L2, sufficiently close together that the flux 
produced by a current i1(t) flowing through L1 establishes an open-circuit voltage v2(t) across 
the terminals of L2.Mutual inductance,M21, is defined such that 

v2(t)=M21di1(t)/dt ------------------ [1] 
 
 
 
 
 
 
 



Figure (a) A current i1 through L1 produces an open-circuit voltage v2across L2. (b) A 
current i2 through L2 produces an open-circuit voltage v1 across L1. 

 
The order of the subscripts on M21 indicates that a voltage response is produced at L2 
by a current source at L1. If the system is reversed, as indicated 
in fig.(b) then we have 
v1(t)=M12di2(t)/dt ---------------- [2] 

It can be proved that the two mutual inductances M12 and M21 are equal and thus, M12 
= M21=M 

The existence of mutual coupling between two coils is indicated by a double-headed 
arrow, as shown in Fig. (a )and (b) 
Mutual inductance is measured in Henrys and, like resistance, inductance, and 
capacitance, is a positive quantity. The voltage M di/dt, however, may appear as either a 
positive or a negative quantity depending on whether the current is increasing or 
decreasing at a particular instant of time. 

Coefficient of coupling k : Is given by the relation M = k√L1 L2 and its value lies between 0 and 
1. It can assume the maximum value of 1 when the two coils are wound on the same 
core such that flux produced by one coil completely links with the other coil. This is 
possible in well designed cores with high permeability. Transformers are designed to 
achieve a coefficient of coupling of1.Dot Convention: 

 
The polarity of the voltage induced in a coil depends on the sense of winding of the coil. 
In the case of Mutual inductance it is indicated by use of a method called “dot 
convention”. The dot convention makes use of a large dot placed at one end of each of 
the two coils which are mutually coupled. Sign of the mutual voltage is determined as 
follows: 

A current entering the dotted terminal of one coil produces an open circuit voltage with a 
positive voltage reference at the dotted terminal of the second coil. 
Thus in Fig(a) i1 enters the dotted terminal of L1, v2 is sensed positively at the dotted terminal of 
L2, and v2 = M di1/dt 
It may not be always possible to select voltages or currents throughout a circuit so that the passive 
sign convention is everywhere satisfied; the same situation arises with mutual coupling. For 
example, it may be more convenient to represent v2 by a positive voltage reference at the un dotted 
terminal, as shown in Fig (b). Then v2 = −M di1/dt. Currents also may not always enter the dotted 
terminal as indicated by Fig (c) and (d). Then we note that: 
A current entering the undotted terminal of one coil provides a voltage that is positively sensed at 
the undotted terminal of the second coil. 

 
 

Figure : (a) and (b) Current entering the dotted terminal of one coil produces a voltage 



that is sensed positively at the dotted terminal of the second coil. (c) and (d) Current 
entering the undotted terminal of one coil produces a voltage that is sensed positively at 
the undotted terminal of the second coil. 

 
Important Concepts and formulae: 

 
Resonance and Series RLC circuit: 

 

ωr2 = ω1ω2 = 1/LC ∴  

ωr = √ω1ω2 = /√LC BW =R/2πL 

Q = ωr L/ R=  1/ωrRCand in terms of R,LandC= (1/R)(√L/C) 

Q = fr /BW i.e.inversely proportional to theBW 
Voltage magnification Magnification  = Q= VL/V or VC /V 

 
Important points In Series RLC circuit at resonant frequency : 

 
 The impedance of the circuit becomes purely resistive and minimum i.eZ =R 
 The current in the circuit becomesmaximum 

 The magnitudes of the capacitive Reactance and Inductive Reactance becomeequal 
 The voltage across the Capacitor becomes equal to the voltage across the 

Inductor at resonance and is Q times higher than the voltage across theresistor 
 
 

Resonance and Parallel RLC circuit: 
 

ωr2  =  ω1ω2  = 1/LC ∴ ωr   = √ω1ω2 =1/√LC same as in series RLCcircuit 

BW = 1/2π RC 

Q = R/ωrL = ωrRC and  in terms of R, LandC = R (√C/L) [ Inverse of 
what we got in Series RLCcircuit] 
Q = fr/ BW In Parallel RLC also inversely proportional to the BW 

Current  Magnification  = Q= IL/I or IC /I 

Important points In Parallel RLC circuit at resonant frequency : 
 

 The impedance of the circuit becomes resistive and maximum i.eZ =R 
 The current in the circuit becomesminimum 

 The magnitudes of the capacitive Reactance and Inductive Reactance becomeequal 
 The current through the Capacitor becomes equal and opposite to the current 

through the Inductor at resonance and is Q times higher than the current through 
theresistor 



Magnetic circuits : 
 

Ampere’sLaw: ∮�. �� =Inet and in the case of a simple closed 
magnetic path of a ferromagnetic material it simplifies to Hl=Ni or H 
=Ni/l 

 
Magnetic flux density: B =μH 
Magnetic field intensity: H =Ni/l 
Total magnetic flux intensity:  Ø = BA = μHA = μ Ni A /l 
Reluctance of the magneticcircuit: R = mmf/Flux = Ni/ Ø =l/μA 

 
Faradays law of electromagnetic Induction: 

 

Self induced e.m.f of a coil of N turns is givenby: eind= − �dØ/dt = −L dI/dtwhere L 

is the inductance of the coil of N turns with radius r and given by L = (μ N2 πr2 / l)i 
Equivalent Reluctance of a series Magneti ccircuit:  Req series  = R1 + R2 + 
R3 + …. Equivalent Reluctance of a Parallel Magnetic circuit: 1/Req 

parallel= 1/R1 + 1/R2 + 1/R3 + ..Coefficient of coupling k Is given by the relation: 
M = k√L1L2 

Illustrative examples: 
 
 

Example 1: A toroidal core of radius 6 cms is having 1000 turns on it. The radius of 

cross section of the core 1cm.Find the current required to establish a total magnetic flux 

of 0.4mWb.When 

 
(a) The core isnonmagneticThe core is made of iron having a relative permeability of4000 

 

Solution: 
 

This problem can be solved by the direct application of the following formulae we 

know in magnetic circuits: B = Φ/A = µH and H = Ni/l 

 
Where 

 
B = magnetic flux density(Wb/mtr2) Φ = Total magnetic flux(Wb)) 

 
A = Cross sectional area  ofthe core(mtr2) µ = µrµ0 = Permeability(Henrys/mtr) 

µr = Relative permeability of the material ( Dimensionless) 
 

µ0 = free space permeability = 4π x 10-7 Henrys/mtr 
 

H = Magenetic fieldintensity AT/mtr N = Number of turns of thecoil 



i = Current in thecoil (Amps) l = Length of the 

coil (mtrs) from the above relations we can get ias 

i = H l/N = (1/ µ )(Φ/A ) l / N = (1/ µ )(Φ/ N) l / A = (1/ µ )(Φ/ N) [ 2πrT / πCr 2 ] = [ 2rT Φ / µ CN r 2 
] 

 
Where rTis the radius of the toroid and rC is the radius of cross section of the coil 

 
Now we can calculate the currents in the two cases by substituting the respective values. 

 
(a) Here µ = µ0. Therefore i = ( 2 x 6 x 10-2 x 4 x 10-4 )/ (4π x 10-7 x 1000 x 10-4) = 380 Amps 
(b) Here µ = µrµ0. Therefore i = ( 2 x 6 x 10-2 x 4 x 10-4 )/ (4000 x4π x 10-7 x 1000 x 10-4) = 0.095 
Amps 

 
Ex.2: (a) Draw the electrical equivalent circuit of the magnetic circuit shown in the 

figure below. The area of the core is 2x2 cm2 .The length of the air gap is 1cm and 

lengths of the other limbs are shown in the figure. The relative permeability of the core 

is4000. 

(b) Find the value of the current ‘i’ in the above example which produces a flux 

density of 1.2 Tesla in the air gap . The number f turns of the coil are5000. 
 

 
 

Solution: (a) 
 

To draw the equivalent circuit we have to find the Reluctances of the various flux 

paths independently. The reluctance of the path abcd is given by: R1 = length of the 

path abcd/µrµ0A 

=   (32x10-2) / (4π x 10-7 x 4000 x 4x10-4) =1.59 x 105AT/Wb 
 

The reluctance of the path afedis equal to the reluctance of the path abcdsince it has the 

same length, same permeability and same cross sectional area. Thus R1 = R2 

Similarly the reluctance of the path ag (R3) is equal to that of the path hd(R4) and can be calculated 
as: 

R3   = R4= (6.5 x 10-2) / (4π x 10-7 x 4000 x 4x10-4)  = 0.32 x 105AT/Wb 

The reluctance of the air gap path ghRG can be calculated as : RG = length of the air 



gap path gh/µ0A ( Here it is to be noted that µ is to be taken as µ0 only and µr 

should not be included) 

RG = (1 x 10-2) / (4π x 10-7 x 4 x 10-4)=198.94 x 105AT/Wb 



MODULE II 
Resonance and Three Phase Circuits 

 
Three Phase Circuits Introduction: 

 
 

Three-phase systems are commonly used in generation, transmission and distribution of electric power. 

Power in a three-phase system is constant rather than pulsating and three-phase motors start and run much 

better than single-phase motors. A three-phase system is a generator-load pair in which the generator 

produces three sinusoidal voltages of equ 

each other. 

There are two types of system available in electric circuit, single phase and three phase system. In single 

phase circuit, there will be only one phase, i.e the current will flow through only one wire and there will be 

one return path called neutral line to complete the circuit. So in single phase minimum amount of power can 

be transported. Here the generating station and load station will also be single phase. This is an old system 

using from previous time. 

 
In poly phase system, that more than one phase can be used for generating, transmitting and for load 

system. Three phase circuit is the polyp hase system where three phases are send together from the 

generator to the load. Each phase is having a phase difference of 120°, i.e 120° angle electrically. So from 

the total of 360°, three phases are equally divided into 120° each. The power in three phase system is 

continuous as all the three phases are involved in generating the total power. The sinusoidal waves for 3 

phase system is shown below the three phases can be used as single phase each. So if the load is single 

phase, then one phase can be taken from the three phase circuit and the neutral can be used as ground to 

complete the circuit.. 

 
The phase voltages va(t), vb(t) and vc(t) are as follows 

 

va 

vb 

Vm cos 

Vm cos 

t  
t 120 

 

vc Vm cos  t 240 , 
 

 

the corresponding phasors are 



 

Vb  

Vm Vc 

Vm 

e j120 

e j240 . 

 
 
 
 
 
 
 
 
 
 
 
 

 

Basic three Phase Circuit 

Advantages of Three Phase is preferred Over Single Phase 
The three phase system can be used as three single phase line so it can act as three single phase system. 

The three phases generation and single phase generation is same in the generator except the arrangement 

of coil in the generator to get 120° phase difference. The conductor needed in three phase circuit is 75% 

that of conductor needed in single phase circuit. And also the instantaneous power in single phase system 

falls down to zero as in single phase we can see from the sinusoidal curve but in three phase system the 

net power from all the phases gives a continuous power to the load. the will have better and higher 

efficiency compared to the single phase system. 

 
In three phase circuit, connections can be given in two types: 

 
1. Star connection 
2. Delta connection 

 
STAR CONNECTION 

In star connection, there is four wire, three wires are phase wire and fourth is neutral which is taken 

from the star point. Star connection is preferred for long distance power transmission because it is having 

the neutral point. In this we need to come to the concept of balanced and unbalanced current in power 

system. 

 
When equal current will flow through all the three phases, then it is called as balanced current. And 

when the current will not be equal in any of the phase, then it is unbalanced current. In this case, during 

balanced condition there will be no current flowing through the neutral line and hence there is no use of 

the neutral terminal. But when there will be unbalanced current flowing in the three phase circuit, neutral 

is having a vital role. It will take the unbalanced current through to the ground and protect the 

transformer. Unbalanced current affects transformer and it may also cause damage to the transformer and 

for this star connection is preferred for long distance transmission. 

Va Vm 



The Star Connection 
 

In star connection, the line voltage is √3 times of phase voltage. Line voltage is the voltage between two 

phases in three phase circuit and phase voltage is the voltage between one phase to the neutral line. And 

the current is same for both line and phase. It is shown as expression below 

 

Delta Connection 

In delta connection, there are three wires alone and no neutral terminal is taken. Normally delta 

connection is preferred for short distance due to the problem of unbalanced current in the circuit. The 

figure is shown below for delta connection. In the load station, ground can be used as neutral path if 

required. In delta connection, the line voltage is same with that of phase voltage. And the line current is 

√3 times of phase current. It is shown as expression below, 
 

 



 
 

In three phase circuit, star and delta connection can be arranged in four different ways- 

 
1. Star-Star connection 
2. Star-Delta connection 
3. Delta-Star connection 
4. Delta-Delta connection 

Phase Sequence 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
But the power is independent of the circuit arrangement of the three phase system. The net power in the 

circuit will be same in both star and delta connection. The power in three phase circuit can be calculated 

from the equation below, 

 
 

Since there is three phases, so the multiple of 3 is made in the normal power equation and the PF is power 
factor. Power factor is a very important factor in three phase system and sometimes due to certain error, it 
is corrected by using capacitors. 



V 1 j3 j3 0 

2 

Z 

V 
e j 

0 

ANALYSIS OF BALANCED THREE PHASE CIRCUITS 

 
In a balanced system, each of the three instantaneous voltages has equal amplitudes, but is 

separated from the other voltages by a phase angle of 120. The three voltages (or phases) are typically 
labeled a, b and c. The common reference point for the three phase voltages is  designated as  the  
neutral connection and is labeled . 
A three-phase system is shown in Fig. In a special case all impedances are identical 

 

Za = Zb = Zc = Z 
 

Such a load is called a balanced load and is described by equations 

Va Vb 

Ia Ib 
I 

Vc . 

c Z 

 

 
 

Using KCL, we have, 
 
 

Va 

Vb c 

V 

m 
240 

1   e j120 
 1 1  

V 1 cos120 jsin120 cos240 jsin240 . 
m 

 

 

In Ia 

 

Ib Ic 

 
1 Va Vb Vc 

     ,(4) 

Z 

 

 
�  

m 2 2 2 

 

From the above result, we obtain In . 
 

Since the current flowing though the fourth wire is zero, the wire can be removed 

Z 



V Ib Z

V Ic Z

Va Vn 

Va Ia Z 

 

 
n n‘ 

 
 
 
 

ANALYSIS OF UNBALANCED LOADS 
Three-phase systems deliver power in enormous amounts to single-phase loads such as lamps, heaters, 

air-conditioners, and small motors. It is the responsibility of the power systems engineer to distribute 

these loads equally among the three-phases to maintain the demand for power fairly balanced at all 

times. While good balance can be achieved on large power systems, individual loads on smaller systems 

are generally unbalanced and must be analyzed as unbalanced three phase systems. 

 
When the three phases of the load are not identical, an unbalanced system is produced. An unbalanced Y- 

connected system is shown in Fig.1. The system of Fig.1 contains perfectly conducting wires connecting 

the source to the load. Now we consider a more realistic case where the wires are represented by 

impedances Zp and the neutral wire connecting n and n‘ is represented by impedance Zn 

 
 

 

the node n as the datum, we express the currents Ia, Ib, Ic and In in terms of the node voltage Vn 
 

Ia 

 
 
 

Ib 
Vb Vn 

Zb Zp 

Za Zp 



3

Ic 
Vc Vn 

Zc Zp 

Vn 

In 
 
 

The node equation is  
Vn Va Vn  Vb Vn  Vc  Vn 

Zn Za   Zp Zb   Zp Zc Zp 

 

Va Vb 

Za 
 Z b 


Zp Zp 

And Vn 1 1 1 1 

Zn Za Zp Zb 

Zp 

Zc Zp 

 
Power in three-phase circuits 

In the balanced systems, the average power consumed by each load branch is the same and given by 
~ 

Pav Veff Ieff cos  

where Veff is the effective value of the phase voltage, Ieff is the effective value of the phase current and is 

the angle of the impedance. The total average power consumed by the load is the sum of those consumed 

by each branch, hence, we have 

~ 
Pav 3Pav 3Veff Ieff cos  

 

In the balanced   Y systems, the  phase current   has the same amplitude as the line current 

, whereas the line voltage has the effective value 
L 

Which is times greater than the 

 

 
effective value of the phase voltage, 

3Veff . Hence, using (22), we obtain 
 
 

Measurement of Three Phase Power by Two Wattmeter’s Method 

In this method we have two types of connections 

(a) Star connection of loads 

(b) Delta connection of loads. 

When the star connected load, the diagram is shown in below- 

Zn 

0 

Vc 

Z c Zp 

Ieff Ieff V 
eff 
L 

Veff L 



 
 

 
 
 
 

For star connected load clearly the reading of wattmeter one is product phase current and 

voltagedifference (V2-V3). Similarly the reading of wattmeter two is the product of phase current and the 

voltage difference (V2-V3). Thus the total power of the circuit is sum of the reading of both the 

wattmeter’s.Mathematically we can write 

 
 

But we have I1+I2+I3=0, hence putting the value of I1+I2=-I3. We get total power as V1I1+V2I2+V3I3. 
For delta connected load, the diagram is shown in below 

 
 
 
 

 
The reading of wattmeter one can be written as 

 



And reading of wattmeter two is 
 

 

But V1+V2+V3=0, hence expression for total power will reduce to V1I1+V2I2+V3I3. 

 
13.16 Measurement of Three Phase Power by One Wattmeter Method 

 
Limitation of this method is that it cannot be applied on unbalanced load. So under this condition we have I1=I2=I3=I 

and V1=V2=V3=V. 

 
Diagram is shown below: 

 
 
 

 

 
 

Two switches are given which are marked as 1-3 and 1-2, by closing the switch 1-3 we get reading of wattmeter as 

Similarly the reading of wattmeter when switch 1-2 is closed is 

 
 
 
 

 
Locus diagrams 

Introduction: In AC electrical circuits the magnitude and phase of the current vector 
depends upon the values of R,L&C when the applied voltage and frequency are kept 
constant. The path traced by the terminus (tip) of the current vector when the 
parameters R,L&C are varied is called the current Locus diagram . Locus diagrams are 
useful in studying and understanding the behavior of the RLC circuits when one of these 
parameters is varied keeping voltage and frequency constant. 
In this unit,Locus diagrams are developed and explained for series RC,RL circuits and 
Parallel LC circuits along with their internal resistances when the parameters R,L and C 
are varied. 



The term circle diagram identifies locus plots that are either circular or semicircular. The 
defining equations of such circle diagrams are also derived in this unit for series RC and 
RL diagrams. 
In both series RC,RL circuits and parallel LC circuits resistances are taken to be in 
series with L and C to highlight the fact that all practical L and C components will have 
at least a small value of internal resistance. 

 
Series RL circuit with varying Resistance R: 

 
Refer to the series RL circuit shown in the figure (a) below with constant XL and varying 
R. The current IL lags behind the applied voltage V by a phase angle Ɵ = tan-1(XL/R) for 
a given value of R as shown in the figure (b) below. When R=0 we can see that the 
current is maximum equal to V/XL and lies along the I axis with phase angle equal to 
900. When R is increased from zero to infinity the current gradually reduces from 
V/XLto0andphaseanglealsoreducesfrom900to 
00. Ascanbeseenfromthefigure,thetipofthecurrentvectortracesthepathofasemicircle 
with its diameter along the +ve I axis. 

 

 

Fig(a):  Series RL circuit with Fig(b): Locus of current vector IL with variation 
of R Varying Resistance R 

 
The related equations are: 
IL =V/Z Sin Ɵ = XL/Z or Z = XL/ Sin Ɵ and Cos Ɵ 
= R / Z Therefore IL = (V/XL) SinƟ 
For constant V and XL the above expression for IL is the polar equation of a circle with 
diameter (V/XL) as shown in the figure above. 

 
Circle equation for the RL circuit: (with fixed reactance and variable Resistance): 

 
The X and Y coordinates of the current 
ILare IX =  ILSinƟ IY = IL CosƟ 
From the relations given above and earlier we get 

IX   = (V/Z )( XL/Z) = VXL/Z2 ---------------------------- (1) 

and IY  = (V/Z)(R/Z) = V R/Z2 ------------------------------------- (2) 

Squaring and adding the above two equations we get 



IX 
2 + IY2      =  V2(XL

2+R2) /  Z4  =  (V2Z2  )/  Z4 = V2/Z2-------------- (3) 
From equation (1) above we have Z2 = V XL / IX and substituting this in the above 
equation (3) we get: 

IX 2 + IY2   = V2/ (V XL / IX ) = (V/XL)XI
 or IX 2 + IY2 − 
(V/XL)XI =0 

Adding (V/2XL)2 to both sides ,the above equation can be written as 

[IX  − V/2XL ]2+ IY2=(V/2XL)2 --------------------------------------- (4) 
Equation (4) above represents a circle with a radius of (V/2XL) and with it’s coordinates of the 
centre as (V/2XL , 0) 

 
Series RC circuit with varying Resistance R: 

 
Refer to the series RC circuit shown in the figure (a) below with constant XC and 
varying R. The current IC leads the applied voltage V by a phase angle Ɵ = tan-

1(XC/R) for a given value of R as shown in the figure (b) below. When R=0 we can 
see that the current is maximum equal to − 
V/XC and lies along the negative I axis with phase angle equal to − 900. When R is  increased 
from zero to infinity the current gradually reduces from −V/XC to 0 and phase angle  also 
reduces from −900 to 00. As can be seen from the figure, the tip of the current vector 
traces the path of a semicircle but now with its diameter along the negative Iaxis. 

 
Circle equation for the RC circuit: (with fixed reactance and variable Resistance): 

 
In the same way as we got for the Series RL circuit with varying resistance we can get 
the circle equation for an RC circuit with varying resistance as : 

[IX + V/2XC ]2+ IY2 = (V/2XC)2 

Whose coordinates of the centre are (−V/2XC , 0) and radius equal to V/2XC 

 

 

Fig: Series RCcircuitwith Fig: Locus of current vectorIC 

VaryingResistanceR with variation ofR 
 

Series RL circuit with varying Reactance XL: 
 

Refer to the series RL circuit shown in the figure (a) below with constant R and varying 
XL. The current IL lags behind the applied voltage V by a phase angle Ɵ = tan-1(XL/R) for 
a given value of 



R as shown in the figure (b) below. When XL =0 we can see that the current is maximum 
equal  to V/R and lies along the +ve V axis with phase angle equal to 00. When XL is 
increased from  zero to infinity the current gradually reduces from V/R to 0 and phase 
angle increases from 00 to 900. As can be seen from the figure, the tip of the current 
vector traces the path of a semicircle with its diameter along the +ve V axis and on to its 
rightside. 

 

 

Fig(a): Series RL circuit with varying XL Fig(b) : Locus of current vector IL with variation of XL 

Series RC circuit with varying Reactance XC: 
Refer to the series RC circuit shown in the figure (a) below with constant R and varying 
XC. The current IC leads the applied voltage V by a phase angle Ɵ= tan-1(XC/R) for a 
given value of R as shown  in the figure  (b) below.  When  XC  =0 we can  see that the  
current is  maximum equal to 
V/R and lies along the V axis with phase angle equal to 00. When XC is increased from 
zero to infinity the current gradually reduces from V/R to 0 and phase angle increases 
from 00 to −900. As can be seen from the figure, the tip of the current vector traces the 
path of a semicircle with 
its diameter along the +ve V axis but now on to its leftside. 

 
 
 
 
 
 
 
 
 
 
 

Fig(a): Series RC circuit with varying XC Fig(b): Locus of current vector IC with variation 

of XC Parallel LC circuits: 
Parallel LC circuit along with its internal resistances as shown in the figures below is 
considered here for drawing the locus diagrams. As can be seen, there are two branch 
currents IC and IL 



along with the total current I. Locus diagrams of the current IL or IC (depending on which 
arm is varied)and the total current I are drawn by varying RL, RC , XL and XC one by one. 

 
Varying XL: 

 
 

Fig(a): parallel LC circuit with Internal Resistances RL and RC in series with L 
(Variable) and C (fixed)respectively. 

The current IC through the capacitor is constant since RC and C are fixed and it leads the 
voltage vector OV by an angle ƟC = tan-1 (XC/RC) as shown in the figure (b). The current 
IL through the inductance is the vector OIL . It’s amplitude is maximum and equal to V/RL 

when XL is zero and it is in phase with the applied voltage V. When XL is increased from 
zero to infinity it’s amplitude decreases to zero and phase will be lagging the voltage by 
900. In between, the phase angle will be lagging the voltage V by an angle ƟL = tan-1 
(XL/RL). The locus of the current vector IL is a semicircle with a diameter of length equal 
to V/RL. Note that this is the same locus what we got earlier for the series RL circuit with 
XL varying except that here V is shown horizontally. 
Now, to get the locus of the total current vector OI we have to add vectorially the 
currents IC and IL . We know that to get the sum of two vectors geometrically we have to 
place one of the vectors staring point (we will take varying amplitude vector IL)at the tip 
of the other vector (we will take constant amplitude vector IC)and then join the start of 
fixed vector IC to the end of varying vector IL. Using this principle we can get the locus of 
the total current vector OI by shifting the IL semicircle starting point O to the end of 
current vector OIC keeping the two diameters parallel. The resulting semicircle ICIBT 

shown in the figure in dotted lines is the locus of the total current vectorOI. 
 
 

 

Fig (b): Locus of current vector I in Parallel LC circuit when XL is varied from 0 to 



Varying XC: 
 

 

Fig.(a) parallel LC circuit with Internal Resistances RL and RC in series with L 
(fixed) and C (Variable)respectively. 

 
The current IL through the inductor is constant since RL and L are fixed and it lags the 
voltage vector OV by an angle ƟL = tan-1 (XL/RL) as shown in the figure (b). The current 
IC through the capacitance is the vector OIC . It’s amplitude is maximum and equal to 
V/RC when XC is zero and it is in phase with the applied voltage V. When XC is increased 
from zero to infinity it’s amplitude decreases to zero and phase will be leading the 
voltage by 900. In between, the phase angle will be leading the voltage V by an angle 
ƟC = tan-1 (XC/RC). The locus of the current vector IC is a semicircle with a diameter of 
length equal to V/RCas shown in the figure below. Note that this is the same locus what 
we got earlier for the series RC circuit with XC varying except that here V is shown 
horizontally. 
Now, to get the locus of the total current vector OI we have to add vectorially the 
currents IC and IL . We know that to get the sum of two vectors geometrically we have to 
place one of the vectors staring point (we will take varying amplitude vector IC)at the tip 
of the other vector (we will take constant amplitude vector IL) and then join the start of 
the fixed vector IL to the end of varying vector IC. Using this principle we can get the 
locus of the total current vector OI by shifting the IC semicircle starting point O to the end 
of current vector OIL keeping the two diameters parallel. The resulting semicircle ILIBT 

shown in the figure in dotted lines is the locus of the total current vectorOI. 

 
Fig(b) : Locus of current vector I in Parallel LC circuit when XC is varied from 0 to ∞ 



Varying RL: 
The current IC through the capacitor is constant since RC and C are fixed and it leads the 
voltage vector OV by an angle ƟC = tan-1 (XC/RC) as shown in the figure (b). The current 
IL through the inductance is the vector OIL . It’s amplitude is maximum and equal to V/XL 

when RL is zero. Its phase will be lagging the voltage by 900. When RL is increased from 
zero to infinity it’s  amplitude decreases to zero and it is in phase with the applied 
voltage V. In between, the phase angle will be lagging the voltage V by an angle ƟL = 
tan-1 (XL/RL). The locus of the current vector  IL is a semicircle with a diameter of length 
equal to V/RL. Note that this is the same locus what we got earlier for the series RL 
circuit with R varying except that here V is shown horizontally. 

 

 

 
Fig.(a) parallel LC circuit with Internal Resistances RL (Variable) and RC (fixed) in series 

with L and C respectively. 
Now, to get the locus of the total current vector OI we have to add vectorially the 
currents IC and IL . We know that to get the sum of two vectors geometrically we have to 
place one of the vectors staring point (we will take varying amplitude vector IL)at the tip 
of the other vector (we will take constant amplitude vector IC)and then join the start of 
fixed vector IC to the end of varying vector IL. Using this principle we can get the locus of 
the total current vector OI by shifting the IL semicircle starting point O to the end of 
current vector OIC keeping the two diameters parallel. The resulting semicircle ICIBT 

shown in the figure in dotted lines is the locus of the total current vectorOI. 
 

 
 

Fig(b) : Locus of current vector I in Parallel LC circuit when RL is varied from 0 to 



Varying RC: 
 

Fig.(a) parallel LC  circuit with Internal Resistances RL (fixed) andRC(Variable)
 in series 
with L and Crespectively. 

 
The current IL through the inductor is constant since RL and L are fixed and it lags the 
voltage vector OV by an angle ƟL = tan-1 (XL/RL) as shown in the figure (b). The current 
IC through the capacitance is the vector OIC . It’s amplitude is maximum and equal to 
V/XC when RC is zero and its phase will be leading the voltage by 900 . When RC is 
increased from zero to infinity it’s amplitude decreases to zero and it will be in phase 
with the applied voltage V. In between, the phase angle will be leading the voltage V by 
an angle ƟC = tan-1 (XC/RC). The locus of the current vector IC is a semicircle with a 
diameter of length equal to V/XC as shown in the figure below. Note that this is the same 
locus what we got earlier for the series RC circuit with R varying except that here V is 
shown horizontally. 

 
Now, to get the locus of the total current vector OI we have to add vectorially the 
currents IC and IL . We know that to get the sum of two vectors geometrically we have to 
place one of the vectors staring point (we will take varying amplitude vector IC)at the tip 
of the other vector (we will take constant amplitude vector IL) and then join the start of 
the fixed vector IL to the end of varying vector IC. Using this principle we can get the 
locus of the total current vector OI by shifting the IC semicircle starting point O to the end 
of current vector OIL keeping the two diameters parallel. The resulting semicircle ILIBT 

shown in the figure in dotted lines is the locus of the total current vectorOI. 

 

Fig(b) : Locus of current vector I in Parallel LC circuit when RC is varied from 0 to 



r r 

Resonance: 
 

Series RLC circuit: 
The impedance of the series RLC circuit shown in the figure below and the current I 
through the circuit are given by : 

Z = R + jωL +1 /jωC = R + j ( ωL − 
1/ωC) I =Vs/Z 

 

Fig: Series RLC circuit 
The circuit is said to be in resonance when the Inductive reactance is equal to the 

Capacitive reactance. i.e. XL = XC or ωL = 1/ωC. (i.e. Imaginary of the impedance is zero) 
The frequency 

 
at which the resonance occurs is called resonant frequency. In the resonant condition when XL 

= XC they cancel with each other since they are in phase opposition(1800 out of phase) 
and net impedance of the circuit is purely resistive.In this condition the magnitudes of 
voltages across the Capacitance and the Inductance are also equal to each other but 
again since they are of opposite polarity they cancel with each other and the entire 
applied voltage appears across the Resistance alone. 
Solving for the resonant frequency from the above condition of Resonance : ωL = 1/ωC 

2πfrL  = 1/2πfrC 

f 2 = 1/4π2LC and f = 1/2π√LC 
In a series RLC circuit, resonance may be produced by varying L or C at a fixed frequency or by 

varying frequency at fixed L and C. 
 

Reactances, Impedance and Resistance of a Series RLC circuit as a function of frequency: 
 

From the expressions for the Inductive and capacitive reactances we can see that when 
the frequency is zero, capacitance acts as an open circuit and Inductance as a short 
circuit. Similarly when the frequency is infinity inductance acts as an open circuit and 
the capacitance acts as a short circuit. The variation of Inductive and capacitive 
reactances along with Resistance R and the Total Impedance are shown plotted in the 
figure below. 
As can be seen, when the frequency increases from zero to ∞ Inductive reactance XL 
(directly proportional to ω) increases from zero to ∞ and Capacitive reactance XC 

(inversely proportional to ω) decreases from −∞ to zero. Whereas, the Impedance 
decreases from ∞ to Pure Resistance R as the frequency increases from zero to fr ( as 
capacitive reactance reduces from 



−∞ and becomes equal to Inductive reactance ) and then increases from R to ∞ as the 
frequency increases from fr to ∞ (as inductive reactance increases from its value at 
resonant frequency to ∞ ) 

 

 

Fig : Reactance and Impedance plots of a Series RLC circuit 

Phase angle of a Series RLC circuit as a function of frequency: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig : Phase plot of a Series RLC circuit 
 

The following points can be seen from the Phase angle plot shown in the figure above: 
 

 At frequencies below the resonant frequency capacitive reactance is higher 
than the inductive reactance and hence the phase angle of the current leads 
the voltage.

 As frequency increases from zero to fr the phase angle changes from -900 to zero.



 At frequencies above the resonant frequency inductive reactance is higher 
than the capacitive reactance and hence the phase angle of the current lags 
the voltage.

 As frequency increases from fr and approaches ∞, the phase angle increases from zero
and approaches900 

 
Band width of a Series RLC circuit: 

The band width of a circuit is defined as the Range of frequencies between which the output 
power is half of or 3 db less than the output power at the resonant frequency. These frequencies 
are called the cutoff frequencies, 3db points or half power points. But when we consider the 
output voltage or current, the range of frequencies between which the output voltage or current 
falls to 0.707 times of the value at the resonant frequency is called the Bandwidth BW. This is 
because voltage/current are related to power by a factor of √ 2 and when we are consider √ 2 
times less it becomes 0.707. But still these frequencies are called 

as cutoff frequencies, 3db points or half power points. The lower end frequency is called lower 
cutoff frequency and the higher end frequency is called upper cutoff frequency. 

 

 

 

Fig: Plot showing the cutoff frequencies and Bandwidth of a series RLC circuit 

 
Derivation of an expression for the BW of a series RLC circuit: 
We know that BW = f2 – f1 Hz 
If the current at points P1 and P2 are 0.707 (1/√ 2) times that of I max ( current at the 
resonant frequency) then the Impedance of the circuit at points P1 and P2 is √ 2 R ( i.e. √ 
2 times the impedance at fr ) 
But Impedance at point P1 is given by: Z = √ R2 + (1/ω1C – ω1L )2 and equating this to √ 
2 R weget: (1/ω1C) – ω1L= R -------------- (1) 
Similarly Impedance at point P2 is given by: Z = √ R2 + (ω2L – 1/ω2C )2 and equating this to 

√ 2 Rwe get: ω2L – (1/ω2C) = R ------ (2) 
Equating the above equations (1) and (2) we get: 

 1/ω1C – 
ω1L 

= ω2L –1/ω2C    

Rearranging we get L( ω1+ω2) = 1/C [( ω1+ 
ω2)/ω1ω2] 

i.e ω1ω2 =1/LC 

But we already know that for a series RLC circuit the resonant frequency is given by 
ωr

2 = 1/LC Therefore: ω1ω2 = ωr
2    ---- (3) and 1/C =   

ωr
2L ------ (4) 



r r 

Next adding the above equations (1) and (2) we get: 
1/ω1C – ω1L+ ω2L–1/ω2C = 

2R (ω2 – ω1)L + (1/ω1C – 
1/ω2C) =2R 

(ω2  – ω1)L + 1/C[(ω2  – ω1)/ω1ω2)= 2R ------ (5) 
Using the values of ω1ω2 and  1/C  from equations (3) and (4) above into equation (5)  
above  we get: (ω2 – ω1)L + ω 2L [(ω2 – ω1)/ ω 2) =2R 
i.e. 2L (ω2 –
ω1) 

=2R i.e. (ω2–ω1) =R/L and (f2 – f1) = R/2πL ----- (6) 

Or finally Band width   BW = R/2πL    ----- (7) 

 
Since fr lies in the centre of the lower and upper cutoff frequencies f1 and f2 using the 
above equation (6) we can get: 

 

 

Further  by  dividing the equation(6) t 
Relation: (f2 – f1) / fr    =   R/2πfrL or BW / fr    =   R/2πfrL ---------------- (10) 
Here an important property of a coil i.e. Q factor or figure of merit is defined as the 
ratio of the reactance to the resistance of acoil. 

Q  =  2π fr L/R 
 (11
) Now using the relation (11) we can rewrite the relation (10) as 

Q  = fr/BW  (12) 
 

Quality factor of a series RLC circuit: 
The quality factor of a series RLC circuit is defined as: 

Q = Reactive power in Inductor (or Capacitor) at resonance / Average power at Resonance 

 
Reactive power in Inductor at resonance = 
I2XL Reactive power in Capacitor at 
resonance = I2XC Average power at 
Resonance =I2R 
Here the power is expressed in the form I2X (not as V2/X) since I is common through 
R.L and C  in the series RLC circuit and it gets cancelled during thes implification. 
Therefore Q = I2XL / I2R = I2XC / I2R 
i.e. Q  =   XL / R  = ωrL/ R --------------------------------- (1) 
Or Q  =   XC / R =1/ωrRC 
 (2) From these two relations we can also define 
Q factor as : 

Q = Inductive (or Capacitive ) reactance at resonance / Resistance 
Substituting the value of ωr = 1/√LC in the expressions (1) or (2) for Q above we can 
get the value of Q in terms of R, L,C as below. 

Q  =   (1/√LC )L/R  = (1/R)(√L/C) 
Selectivity: 
Selectivity of a series RLC circuit indicates how well the given circuit responds to a given 
resonant frequency and how well it rejects all other frequencies. i.e. the selectivity is directly 
proportional to Q factor. A circuit with a good selectivity (or a high Q factor) will have 
maximum gain at the resonant frequency and will have minimum gain at other frequencies .i.e. it 
will have very low band width. This is illustrated in the figure below. 

f1 = fr – R/4πL ------ (8) 
f2 = fr + R/4πL ------ (9) 
a
b 

ov
e 

by fr on both sides we get another impor 
tan 



 

 
 

Fig: Effect of quality factor on bandwidth Voltage Magnification at resonance: 
 

At resonance the voltages across the Inductance and capacitance are much larger than the applied 
voltage in a series RLC circuit and this is called voltage magnification at Resonance. The voltage 
magnification is equal to the Q factor of the circuit. This is proven below. 
If we take the voltage applied to the circuit as V and the current through the circuit at resonance 
as I then 
The voltage across the inductance L is: VL = IXL = (V/R) ωr L 
and The voltage across the capacitance C is: VC = IXC = 
V/R ωrC 
But we know that the Q of a series RLC circuit = ωr L/ R = 1/R ωr C 
Using these relations in the expressions for VL and VC given above we 
get VL=VQ and VC =VQ 
The ratio of voltage across the Inductor or capacitor at resonance to the applied voltage in a 
series RLC circuit is called Voltage magnification and is given by 

Magnification =  Q= VL/Vor VC / V 
 

Important points In Series RLC circuit at resonant frequency: 
 

 The impedance of the circuit becomes purely resistive and minimum i.e Z =R 
 The current in the circuit becomes maximum 
 The magnitudes of the capacitive Reactance and Inductive Reactance becomes equal 
 The voltage across the Capacitor becomes equal to the voltage across the Inductor at 

resonance and is Q times higher than the voltage across the resistor 
 

Bandwidth and Q factor of a Parallel RLC circuit: 
 

Parallel RLC circuit is shown in the figure below. For finding out the BW and Q factor of 
a parallel RLC circuit, since it is easier we will work with Admittance , Conductance and 
Susceptance instead of Impedance ,Resistance and Reactance like in series RLC 
circuit. 



 

 
 
 

Fig: Parallel RLC circuit 

Then we have the relation: Y = 1/Z = 1/R + 1/jωL + jωC = 1/R + j ( ωC −1/ωL) 
 

For the parallel RLC circuit also, at resonance, the imaginary part of the Admittance is 
zero and hence the frequency at which resonance occurs is given by: ωrC − 1/ωrL = 
0 . From this we get: ωrC = 1/ωrL and ωr =1/√LC 
Which is the same value for ωr as what we got for the series RLC circuit. 

 
At resonance when the imaginary part of the admittance is zero the admittance 
becomes minimum.( i.e Impedance becomes maximum as against Impedance 
becoming minimum in series RLC circuit ) i.e. Current becomes minimum in the parallel 
RLC circuit at resonance ( as against current becoming maximum in series RLC circuit) 
and increases on either side of the resonant frequency as shown in the figure below. 

 

 

Fig: Variation of Impedance and Current with frequency in a Parallel RLC circuit 



Here also the BW of the circuit is given by BW = f2-f1 where f2 and f1 are still called the 
upper  and lower cut off frequencies but they are 3db higher cutoff frequencies since we 
notice that at these cutoff frequencies the amplitude of the current is √2 times higher 
than that of the amplitude of current at the resonant frequency. 
The BW is computed here also on the same lines as we did for the series RLC circuit: 
If the current at points P1 and P2 is √ 2 (3db) times higher than that of Imin( current at the 
resonant frequency) then the admittance of the circuit at points P1 and P2 is also √ 2 
times higher than the admittance at fr ) 
But amplitude of admittance at point P1 is given by: Y = √ 1/R2 + (1/ω1L - ω1C )2 and 
equating this to √ 2 /R we get 
1/ω1L − ω1C = 1/R ---------------(1) 
Similarly amplitude of admittance at point P2 is given by: Y = √ 1/R2 + (ω2C − 
1/ω2L)2 and equating this to √ 2 /R we get 
ω2C−1/ω2L = 1/R --------------- (2) 
Equating LHS of (1) and (2) and further simplifying we get 

1/ω1L − ω1C =   ω2C −1/ω2L 
1/ω1L+1/ω2L = ω1C +ω2C 

1/L [(ω1 + ω2)/ ω1ω2] = (ω1 + ω2)C 
1/L C   = ω1ω2 

Next adding the equations (1) and (2) above and further simplifying we get 
1/ω1L – ω1C + ω2C − 1/ω2L = 

2/R (ω2C – ω1C) + (1/ω1L – 
1/ω2L) = 2/R 

(ω2 – ω1)C + 1/L [(ω2 – ω1)/ ω1ω2] = 2/R 
Substituting the value of ω1ω2 = 1/LC 

(ω2 − ω1)C + LC/L [(ω2 − ω1)] = 
2/R (ω2 − ω1)C + C [(ω2 − ω1)] 

= 2/R 
2 C [(ω2 − ω1)] = 
2/R Or [(ω2−ω1)]

 =1/R
C 

From which we get the band width BW = f2-f1 = 1/2π RC 
Dividing both sides by fr  we get : (f2-f1)/ fr = 1/2πfrRC -------- (1) 

Quality factor of a Parallel RLC circuit: 
 

The quality factor of a Parallel RLC circuit is defined as: 
Q = Reactive power in Inductor (or Capacitor) at resonance / Average power at Resonance 

Reactive power in Inductor at resonance = 
V2/XL Reactive power in Capacitor at 
resonance = V2/XC Average power at 
Resonance =V2/R 
Here the power is expressed in the form V2/X (not as I2X as in series circuit) since V is 
common across R,L and C in the parallel RLC circuit and it gets cancelled during the 
simplification. 
Therefore Q = (V2/XL) / (V2/R) = (V2/XC) / (V2/R) 



i.e.   Q = R/ XL  = R/ωrL  
 (1) 
Or   Q =   R/ XC = ωrRC  (2) 
From these two relations we can also define Q factor as: 

Q = Resistance /Inductive (or Capacitive) reactance at resonance 
Substituting the value of ωr = 1/√LC in the expressions (1) or (2) for Q above we can 
get the value of Q in terms of R, L,C as below. 

Q  =   (1/√LC)RC  = R(√C/L) 
Further using the relation Q = ωr RC (equation 2 above ) in the earlier equation (1) we got in 
BW viz.   (f2-f1)/ fr =  1/2π fr RC  we get : (f2-f1)/ fr =1/Q or Q = fr / (f2-f1) = fr /BW 
i.e. In Parallel RLC circuit also the Q factor is inversely proportional to the BW. 

 
Admittance, Conductance and Susceptance curves for a Parallel RLC circuit as a 
function of frequency: 

 The effect of varying the frequency on the Admittance, Conductance and 
Susceptance of a parallel circuit is shown in the figure below. 

 Inductive susceptance BL is given by BL = - 1/ωL. It is inversely 
proportional to the frequency ω and is shown in the in the fourth quadrant 
since it is negative. 

 Capacitive  susceptance  BC   is  given by BC = ωC.  It is directly
 proportional to the frequency ω and is shown in the in the first quadrant as OP 
.It is positive and linear. 

 Net susceptance B = BC - BL and is represented by the curve JK. As can be 
seen it is zero at the resonant frequency fr 

 The conductance G = 1/R and is constant 
 The total admittance Y and the total current I are minimum at the resonant 

frequency as shown by the curve VW 
 

 

Fig: Conductance,Susceptance and Admittance plots of a Parallel RLC circuit 



Current magnification in a Parallel RLC circuit: 
Just as voltage magnification takes place across the capacitance and Inductance at the resonant 
frequency in a series RLC circuit , current magnification takes place in the currents through the 
capacitance and Inductance at the resonant frequency in a Parallel RLC circuit. This is shown 
below. 
Voltage across the Resistance = V =IR 
Current through the Inductance at resonance IL = V/ ωr L = IR / ωr L = I . R/ ωr L = I 
Q Similarly 
Current through the Capacitance at resonance IC = V/ (1/ωr C ) = IR / (1/ωr C ) = I(R ωr C) = I 
Q From which we notice that the quality factor Q = IL / I or IC / I and that the current through 
the inductance and the capacitance increases by Q times that of the current through the resistor at 
resonance. . 

 
Important points In Parallel RLC circuit at resonant frequency: 

 
 The impedance of the circuit becomes resistive and maximum i.e Z =R 

 The current in the circuit becomes minimum 

 The magnitudes of the capacitive Reactance and Inductive Reactance become equal 
 The current through the Capacitor becomes equal and opposite to the current through the 

Inductor at resonance and is Q times higher than the current through the resistor 



MODULE-IV 
 

 
Introduction: 

Time Response Analysis of (DC and AC) circuits 

In this chapter we shall study transient response of the RL, RC series and RLC circuits with 

external DC excitations. Transients are generated in Electrical circuits due to abrupt changes in 

the operating conditions when energy storage elements like Inductors or capacitors are present. 

Transient response is the dynamic response during the initial phase before the steady state 

response is achieved when such abrupt changes are applied. To obtain the transient response of 

such circuits we have to solve the differential equations which are the governing equations 

representing the electrical behavior of the circuit. A circuit having a single energy storage 

element i.e. either a capacitor or an Inductor is called a Single order circuit and it’s governing 

equation is called a First order Differential Equation. A circuit having both Inductor and a 

Capacitor is called a Second order Circuit and it’s governing equation is called a Second order 

Differential Equation. The variables in these Differential Equations are currents and voltages in 

the circuit as a function of time. 

A solution is said to be obtained to these equations when we have found an expression for 

the dependent variable that satisfies both the differential equation and the prescribed initial 

conditions. The solution of the differential equation represents the Response of the circuit. Now 

we will find out the response of the basic RL and RC circuits with DC Excitation. 

RL CIRCUIT with external DC excitation: 
Let us take a simple RL network subjected to external DC excitation as shown in the figure. The 
circuit consists of a battery whose voltage is V in series with a switch, a resistor R, and an 
inductor L. The switch is closed at t = 0. 

 

 
Fig: RL Circuit with external DC excitation 

When the switch is closed current tries to change in the inductor and hence a voltage VL(t) is 
induced across the terminals of the Inductor in opposition to the applied voltage. The rate of 
change of current decreases with time which allows current to build up to it’s maximum value. 

 
 

It is evident that the current i(t) is zero before t = 0.and we have to find out current i(t)for time t 
>0. We will find i(t)for time t >0 by writing the appropriate circuit equation and then solving it 
by separation of the variables and integration. 
Applying Kirchhoff’s voltage law to the above circuit we get : 

V = vR(t)+ vL(t) 
i (t) = 0 fort <0and 



Using the standard relationships of Voltage and Current for the Resistors and Inductors we can 
rewrite the above equations as 

V = Ri + Ldi/dt for t >0 
One direct method of solving such a differential equation consists of writing the equation in such 
a way that the variables are separated, and then integrating each side of the equation. The 
variables in the above equation are I and t. This equation is multiplied by dt and arranged with 
the variables separated as shown below: 

Ri. dt + Ldi = V. dt 
 

i.e Ldi= (V – Ri)dt 
 

i.e Ldi / (V – Ri) = dt 
Next each side is integrated directly to get: 

 
− (L/R) ln(V− Ri) =t + k 

Where k is the integration constant. In order to evaluate k, an initial condition must be invoked. 
Prior to t = 0, i (t) is zero, and thus i (0−) = 0. Since the current in an inductor cannot change by a 
finite amount in zero time without being associated with an infinite voltage, we have i (0+) = 0. 
Setting i = 0 at t = 0, in the above equation we obtain 

Thus, an expression for the response valid for all time t would be 
 

i(t) = V/R [1− e−Rt/L ] 
 

This is normally written as: 
i(t) = V/R [1− e−t./τ ] 

 

where ‘τ’ is called the time constant of the circuit and it’s unit is seconds. 
 
 

The voltage across the resistance and the Inductorfor t >0can be written as : 
 

vR(t) =i(t).R   = V [1− e−t./τ ] 
 

vL(t) = V −vR(t) = V −V [1− e−t./τ ] = V (e−t./τ) 
 

A plot of the currenti(t) and the voltages vR(t) & vL(t) is shown in the figure below. 
 
 
 

 

Fig: Transient current and voltages in the Series RL circuit. 



At t = ‘τ’ the voltage across the inductor will be 
 

vL(τ) = V (e−τ /τ) = V/e = 0.36788 V 
 

And the voltage across the Resistor will bevR(τ) = V [1− e−τ./τ ] = 0.63212 V 
 

The plots of current i(t) and the voltage across the Resistor vR(t) are called exponential growth 
curves and the voltage across the inductor vL(t)is called exponential decay curve. 

 
RC CIRCUIT with external DC excitation: 

 
A series RC circuit with external DC excitation V volts connected through a switch is shown in 
the figure below. If the capacitor is not charged initially i.e. it’s voltage is zero ,then after the 
switch S is closed at time t=0, the capacitor voltage builds up gradually and reaches it’s steady 
state value of V volts after a finite time. The charging current will be maximum initially (since 
initially capacitor voltage is zero and voltage across a capacitor cannot change instantaneously) 
and then it will gradually comedown as the capacitor voltage starts building up. The current and 
the voltage during such charging periods are called Transient Current and Transient Voltage. 

 
 

Fig: RC Circuit with external DC excitation 

Applying KVL around the loop in the above circuit we can write 

V = vR(t) + vC(t) 
 

Using the standard relationships of voltage and current for an Ideal Capacitor we get 
 

vC(t) = (1/C )∫ �(�)�� or i(t) = C.[dvC(t)/dt] 

and using this relation, vR(t) can be written asvR(t) = Ri(t) = R. C.[dvC(t)/dt] 
 

Using the above two expressions for v R(t) and vC(t)the above expression for V can be rewritten as : 
V  =  R. C.[dvC(t)/dt] + vC(t) 

 
Or finally dvC(t)/dt + (1/RC). vC(t) = V/RC 

The inverse coefficient of vC(t) is known as the time constant of the circuit τ and is given by τ = RC and it’s 
Units are seconds. 

The above equation is a first order differential equation and can be solved by using the same method of 
separation of variables as we adopted for the LC circuit. 

 
Multiplying the above equation dvC(t)/dt + (1/RC). vC(t) = V/RC 



both sides by ‘dt’ and rearranging the terms so as to separate the variables vC(t) and t we get: 
 

dvC(t)+ (1/RC). vC(t) . dt = (V/RC).dt 
 

dvC(t)  = [(V/RC)−(1/RC). vC(t)]. dt 
 

dvC(t) / [(V/RC)−(1/RC). vC(t)] = dt 
 

R. C . dvC(t) / [(V−vC(t)] = dt 
Now integrating both sides w.r.t their variables i.e. ‘vC(t)’ on the LHS and‘t’ on the RHS we get 

−RC ln [V −  vC(t)]  = t+ k 
 

where ‘k‘is the constant of integration. In order to evaluate k, an initial condition must be 
invoked. Prior to t = 0, vC(t)is zero, and thus vC(t)(0−) = 0. Since the voltage across a capacitor 
cannot change by a finite amount in zero time, we have vC(t)(0+) = 0. Setting vC(t)= 0 att = 0, in 
the above equation we obtain: 

−RC ln [V] = k 
and substituting this value of k = −RC ln [V] in the above simplified equation−RC ln [V − vC(t)] = t+ k 
we get : 

−RC ln [V − vC(t)] = t−RC ln [V] 
 

i.e. −RC ln [V −  vC(t)]  + RC ln [V] = t i.e. −RC [ln {V − vC(t)}− ln (V)]= t 
 

i.e. [ln {V − vC(t)}] − ln [V]} = −t/RC 
 

i.e. ln [{V − vC(t)}/(V)] = −t/RC 
Taking anti logarithm we get [{V − vC(t)}/(V)] = e −t/RC 
i.e vC(t) = V(1− e −t/RC ) 
Which is the voltage across the capacitor as a function of time . 

 
The voltage across the Resistor is given by : vR(t) = V−vC(t) = V−V(1 − e −t/RC ) = V.e −t/RC 

 
And the current through the circuit is given by: i(t) = C.[dvC(t)/dt] = (CV/CR )e −t/RC=(V/R )e −t/RC 
Or the other way: i(t) = vR(t) /R = ( V.e −t/RC ) /R = (V/R )e −t/RC 

 
In terms of the time constant τ the expressions for vC(t) , vR(t)and i(t) are given by : 

vC(t)   =  V(1 −  e −t/RC ) 
vR(t) =  V.e −t/RC 

i(t) =  (V/R )e −t/RC 
The plots of current i(t) and the voltages across the resistor vR(t)and capacitor vC(t)are shown in 
the figure below. 



 

Fig : Transient current and voltages in RC circuit with DC excitation. 
At t = ‘τ’ the voltage across the capacitor will be: 

vC(τ) = V [1− e−τ/τ ]  =  0.63212 V 
the voltage across the Resistor will be: 

vR(τ)  =   V (e−τ /τ) = V/e =   0.36788 V 
and the current through the circuit will be: 

i(τ) =  (V/R) (e−τ /τ)  = V/R. e =   0.36788 (V/R) 
Thus it can be seen that after one time constant the charging current has decayed to approximately 
36.8 % of it’s value at t=0 . At t= 5 τ charging current will be 

 
i(5τ)   =  (V/R) (e−5τ /τ)  = V/R. e5 = 0.0067(V/R) 

This value is very small compared to the maximum value of (V/R) at t=0 .Thus it can be 
assumed that the capacitor is fully charged after 5 time constants. 
The following similarities may be noted between the equations for the transients in the LC and RC 
circuits: 

 The transient voltage across the Inductor in a LC circuit and the transient current in the RC 
circuit have the same form k.(e−t /τ) 

 The transient current in a LC circuit and the transient voltage across the capacitor in the RC 
circuit have the same form k.(1−e−t /τ) 

But the main difference between the RC and RL circuits is the effect of resistance on the duration 
of the transients. 

 In a RL circuit a large resistance shortens the transient since the time constant τ =L/R 
Becomes small. 

 Where as in a RC circuit a large resistance prolongs the transient since the time constant τ = RC 
becomes large. 

Discharge transients: Consider the circuit shown in the figure below where the switch allows 

both charging and discharging the capacitor. When the switch is position 1 the capacitor gets 

charged to the applied voltage V. When the switch is brought to position 2, the current 

discharges from the positive terminal of the capacitor to the negative terminal through the 

resistor R as shown in the figure (b). The circuit in position 2 is also called source free circuit 

since there is no any applied voltage. 



Fig: RC circuit (a) During Charging (b) During Discharging 
 

The current i1 flow is in opposite direction as compared to the flow of the original charging 

current i. This process is called the discharging of the capacitor. The decaying voltage and the 

current are called the discharge transients. The resistor, during the discharge will oppose the flow 

of current with the polarity of voltage as shown. Since there is no any external voltage source, 

the algebraic sum of the voltages across the Resistance and the capacitor will be zero (applying 

KVL) .The resulting loop equation during the discharge can be written as 

vR(t)+vC(t)  =  0or vR(t) = - vC(t) 
 

We know that vR(t) = R.i(t) =  R. C.dvC(t) /dt. Substituting this in the first loop equation we  

get R. C.dvC(t)/dt + vC(t) = 0 

The solution for this equation is given by vC(t) = Ke-t/τ where K is a constant decided by the 

initial conditions and τ =RC is the time constant of the RC circuit 
 

The value of K is found out by invoking the initial condition vC(t) = V @t = 0 
 

Then we get K = V and hence vC(t) = Ve-t/τ ;  vR(t) =  -Ve-t/τ  and i(t)  = vR(t)/R = (-V/R)e-t/τ 

The plots of the voltages across the Resistor and the Capacitor are shown in the figure below 

 
Fig: Plot of Discharge transients in RC circuit 

 
Decay transients: Consider the circuit shown in the figure below where the switch allows both 

growing and decaying of current through the Inductance. When the switch is position 1 the 

current through the Inductance builds up to the steady state value of V/R. When the switch is 

brought to position 2, the current decays gradually from V/R to zero. The circuit in position 2 is 

also called a source free circuit since there is no any applied voltage. 



 
 

 
Fig: Decay Transient In RL circuit 

 
The current flow during decay is in the same direction as compared to the flow of the original 

growing /build up current. The decaying voltage across the Resistor and the current are called the 

decay transients.. Since there is no any external voltage source , the algebraic sum of the 

voltages across the Resistance and the Inductor will be zero (applying KVL) .The resulting loop 

equation during the discharge can be written as 

vR(t)+vL(t)  =  R.i(t) + L.di(t)/dt = 0 and vR(t) = - vL(t) 

The solution for this equation is given by i(t) = Ke-t/τ where K is a constant decided by the 

initial conditions and τ =L/R is the time constant of the RL circuit. 

The plts of the voltages across the Resistor and the Inductor and the decaying current through the 

circuit are shown in the figure below. 
 

Fig: Plot of Decay transients in RL circuit 

The Concept of Natural Response and forced response: 
The RL and RC circuits we have studied are with external DC excitation. These circuits 

without the external DC excitation are called source free circuits and their Response obtained by 
solving the corresponding differential equations is known by many names. Since this response 
depends on the general nature of the circuit (type of elements, their size, their interconnection 
method etc.,) it is often called a Natural response. However any real circuit we construct cannot 
store energy forever. The resistances intrinsically associated with Inductances and Capacitors 



will eventually dissipate the stored energy into heat. The response eventually dies down,. Hence 
it is also called Transient response. As per the mathematician’s nomenclature the solution of such 
a homogeneous linear differential equation is called Complementary function. 

When we consider independent sources acting on a circuit, part of the response will 

resemble the nature of the particular source. (Or forcing function) This part of the response is 

called particular solution. , the steady state response or forced response. This will be 

complemented by the complementary function produced in the source free circuit. The complete 

response of the circuit is given by the sum of the complementary function and the particular 

solution. In other words: 

The Complete response = Natural response + Forced response 
There is also an excellent mathematical reason for considering the complete response to be 

composed of two parts—the forced response and the natural response. The reason is based on the 

fact that the solution of any linear differential equation may be expressed as the sum of two 

parts: the complementary solution (natural response) and the particular solution (forced 

response). 

Determination of the Complete Response: 
Let us use the same RL series circuit with external DC excitation to illustrate how to determine 
the complete response by the addition of the natural and forced responses. The circuit shown in 
the figure 

 

Fig: RL circuit with external DC excitation 
 

was analyzed earlier, but by a different method. The desired response is the current i (t), and now 
we first express this current as the sum of the natural and the forced current, 

i = in+ i f 
The functional form of the natural response must be the same as that obtainedwithout any 
sources. We therefore replace the step-voltage source by a short circuit and call it the RL source 
free series loop. And in can be shown to be : 

in= Ae−Rt/L 

where the amplitude Ais yet to be determined; since the initial conditionapplies to thecomplete 
response, we cannot simply assume A = i (0).We next consider the forced response. In this 
particular problem theforced response is constant, because the source is a constant Vfor 
allpositive values of time. After the natural response has died out, there can beno voltage across 
the inductor; hence the all ythe applied voltage V appears across R, and theforced response is 
simply 

i f = V/R 
Note that the forced response is determined completely. There is no unknown amplitude. We next 
combine the two responses to obtain: 



i = Ae−Rt/L+ V/R 
And now we have to apply the initial condition to evaluate A. The current is zero prior to t = 
0,and it cannot change value instantaneously since it is the current flowing through an inductor. 
Thus, the current is zero immediately after t = 0, and 

A + V/R = 0 
So 
that 

 
And i = (V/R )(1 − e−Rt/L) 

 
A= −V/R 

 

Note carefully that A is not the initial value of i, since A = −V/R, while i (0) = 0. 
But In source-free circuits, A would be the initial value of the response given by in= I0e−Rt/L ( where I0 
=A is the current at time t=0 ). When forcing functions are present, however,we must first find 
the initial value of the complete response and then substitute this in the equation for the complete 
response to find A.Then this value of A is substituted in the expression for the total response i 

Amoregeneral solution approach: 
The method of solving the differential equation by separating the variables or by evaluating the 
complete response as explained above may not be possible always. In such cases we will rely on 
a verypowerful method, the success of which will depend upon our intuition or experience. We 
simply guess or assume a form for the solution and then test our assumptions, first by 
substitution in the differential equation, and then by applying the given initial conditions. Since 
we cannot be expected to guess the exact numerical expression for the solution, we will assume a 
solution containing several unknown constants and select the values for these constants in order 
to satisfy the differential equation and the initial conditions. 

 
In order to satisfy this equation for all values of time, it is necessary thatA = 0, or s1 = −∞, or s1 
= −R/L. But if A = 0 or s1 = −∞, then everyresponse is zero; neither can be a solution to our 
problem. Therefore, wemust choose 

 
And our assumed solution takes on the 
form: 

s1 = −R/L 
 

i (t) = 
A.e−Rt/L 

 

The remaining constant must be evaluated by applying the initial conditioni (0) = I0. Thus,A = 
I0, and the final form of the assumed solution is(again): 

i (t) = I0.e−Rt/L 

A Direct Route: The Characteristic Equation: 
 

In fact, there is a more direct route that we can take. To obtain the solution for the first order 
DEwe solveds1 + R/L= 0 which is known as the characteristic equationand then substituting 
this value of s1=- R/Lin the assumed solutioni (t) = A.es1t which is same in this direct method 
also. We can obtain the characteristic equation directly from the differential equation, without 
the need for substitution of our trial solution. Consider the general first-order differential 
equation: 

a(d f/dt) + bf = 0 
Where a and b are constants. We substitute s for the differentiation operator d/dt in the original 
differential equation resulting in 



a(d f/dt) + bf = (as + b) f = 0 
From this we may directly obtain the characteristic equation:as + b = 0 
which has the single root s = −b/a.Hence the solution to our differential equationis then given by : 

f = A.e−bt/a 

This basic procedure can be easily extended to second-order differential equations which we will 
encounter for RLC circuits and we will find it useful since adopting the variable separation 
method is quite complex for solving second order differential equations. 
RLC CIRCUITS: 
Earlier, we studied circuits which contained only one energy storage element, combined with a 
passive network which partly determined how long it took either the capacitor or the inductor to 
charge/discharge. The differential equations which resulted from analysis were always first- 
order. In this chapter, we consider more complex circuits which contain both an inductor and 
acapacitor. The result is a second-order differential equation for any voltage or current of 
interest. What we learned earlier is easily extended to the study of these so-called RLC circuits, 
although now we need two initial conditions to solve each differential equation. There are two 
types of RLC circuits: Parallel RLC circuits and Series circuits .Such circuits occur routinely in 
a wide variety of applications and are very important and hence we will study both these circuits. 
Parallel RLC circuit: 

 

 

Let us first consider the simple parallel RLC circuit with DC excitation as shown in the figure below. 
 

Fig: Parallel RLC circuit with DC excitation. 
 

For the sake of simplifying the process of finding the response we shall also assume that the 
initial current in the inductor and the voltage across the capacitor are zero. Then applying the 
Kirchhoff’s current law (KCL)( i = iC +iL )to the common node we get the following integro 
differential equation: 

� 
(V−v)/R = 1/L∫�� ���’ + C.dv/dt 

V/R = v/R+1/L∫�� ���’ + C.dv/dt 

Where v = vC(t) = vL(t) is the variable whose value is to be obtained . 
When we differentiate both sides of the above equation once with respect to time we get 
thestandard Linear second-order homogeneous differential equation 



C.(d2v/dt2)+ (1/R).(dv/dt)+ (1/L).v = 

0 (d2v/dt2)+ (1/RC).(dv/dt)+ (1/LC).v 

= 0 
 

whose solution v(t) is the desired 

response. This can be written in the 

form: 
 

[s2 + (1/RC)s + (1/LC)].v(t) = 0 
 

where ‘s’ is an operator equivalent to (d/dt) and the corresponding characteristic equation(as 
explained earlier as a direct route to obtain the solution) is then given by : 

 
[s2 + (1/RC)s + (1/LC)] = 0 

This equation is usually called the auxiliary equation or the characteristic equation, as we 
discussed earlier .If it can be satisfied, then our assumed solution is correct. This is a quadratic 
equation and the roots s1 and s2are given as: 

 
s1= − 1/2RC+√[(1/2RC)2− 

1/LC] s2= − 1/2RC−√[ 
(1/2RC)2− 1/LC ] 

And we have the general form of the response as : 
v(t) = A1es1t+ A2es2t 

where s1 and s2 are given by the above equations and A1 and A2 are two arbitrary constants which are to be 
selected to satisfy the two specified initial condition 

 
Definition of Frequency Terms: 
The form of the natural response as given above gives very little insight in to the nature of the 
curve we might obtain if v(t)were plotted as a function of time. The relative amplitudes of A1 and 
A2, for example, will certainly be important in determining the shape of the response curve. 
Further the constants s1 and s2 can be real numbers or conjugate complex numbers, depending 
upon the values of R, L, and Cin the given network. These two cases will produce fundamentally 
different response forms. Therefore, it will be helpful to make some simplifying substitutions in 
the equations for s1 and s2.Since the exponents s1tand s2t must be dimensionless, s1 and s2 must 
have the unit of some dimensionless quantity “per second.” Hence in the equations for s1 and s2 
we see that the units of 1/2RC and 1/√LC must also be s−1(i.e., seconds−1). Units of this type are 
called frequencies. 



Now two new terms are defined as 
below: 

 
ω0 = 1/√LC 

α = 1/2RC 

Which is termed as resonant frequency 
and 
which is termed as the exponential damping coefficient 

 
α the exponential damping coefficient is a measure of how rapidly the natural response decays or 
damps out to its steady, final value(usually zero). And s, s1, and s2, are called complex 
frequencies. 
We should note that s1, s2, α, and ω0 are merely symbols used to simplify the discussion of 
RLC circuits. They are not mysterious new parameters of any kind. It is easier, for example, to 
say “alpha” than it is to say “the reciprocal of 2RC.” 

 
Now we can summarize these results. 
The response of the parallel RLC circuit is given by : 

 
v(t) = A1es1t+ A2es2t .... [1] 

where 
 
 
 
 

and 

s1= −α +√α2–ω02 ...... [2] 

s2= −α −√α2– ω02 ..... [3] 
α = 1/2RC .............................. [4] 

 
ω0 = 1/ √LC ....... [5] 

A1 and A2must be found by applying the given initial conditions. 
We note three basic scenarios possible with the equations for s1 and s2 depending on the relative 
values of α and ω0 (which are in turn dictated by the values of R, L, and C). 
Case A: 
α > ω0,i.e when (1/2RC)2>1/LCs1 and s2 will both be negative real numbers, leading to what is 
referred to as an over damped response given by : 

v(t) = A1es1t+ A2es2t 
 

Sinces1 and s2are both negative real numbers this is the (algebraic) sum of two decreasing 
exponential terms. Sinces2 is a larger negative number it decays faster and then the response is 
dictated by the first term A1es1t. 
Case B : 
α = ω0, ,i.e when (1/2RC)2=1/LC , s1 and s2are equal which leads to what is called a critically 
damped response given by : 

v(t) = e−αt(A1t + A2) 

 
 

Case C : 
α < ω0,i.e when (1/2RC)2<1/LC both s1 and s2 will have nonzero imaginary components, 
leading to what is known as an under damped response given by : 

 
v(t) = e−αt(A1 cosωd t + A2 sinωd t) 

where ωdis called natural resonant frequency and is given given by: 

ωd   =  √ω02– α2 
We should also note that the general response given by the above equations [1] through [5] 



describe not only the voltage but all three branch currents in the parallel RLC circuit; the 
constants A1 and A2 will be different for each, of course. 
Transient response of a series RLC circuit: 

 

 
Fig: Series RLC circuit with external DC Excitation 

 
Applying KVL to the series RLC circuit shown in the figure above at t= 0 gives the following 
basic relation : 

V = vR(t) + vC(t ) + vL(t) 
Representing the above voltages in terms of the current iin the circuit we get the following differential 
equation: 

Ri + 1/C∫ ��� + L. (di/dt)= V 
To convert it into a differential equation it is differentiated on both sides with respect to time 
and we get 

L(d2i/dt2)+ R(di/dt)+ (1/C)i = 0 
 

This can be written in the form 

[S2 + (R/L)s + (1/LC)].i = 0 where ‘s’ is an operator equivalent to (d/dt) 
 

And the corresponding characteristic equation is then given by 
 

[s2 + (R/L)s + (1/LC)] = 0 
 

This is in the standard quadratic equation form and the rootss1ands2are given by 

s1,s2 =− R/2L±√[(R/2L)2− (1/LC)]= −α ±√(α2– ω02) 

Where α is known as the same exponential damping coefficient and ω0is known as the same 
Resonant frequency as explained in the case of Parallel RLC circuit and are given by : 

α = R/2L and ω0= 1/ √LC 
 

and A1 and A2must be found by applying the given initial conditions. 



Here also we note three basic scenarios with the equations for s1 and s2 depending on the 
relative sizes of α and ω0 (dictated by the values of R, L, and C). 

 
Case A: 
α > ω0,i.e when (R/2L)2>1/LC , s1 and s2 will both be negative real numbers, leading to what is 
referred to as an over damped response given by : 

i (t) = A1es1t+ A2es2t 
Sinces1 and s2are both be negative real numbers this is the (algebraic) sum of two decreasing 
exponential terms. Sinc s2 is a larger negative number it decays faster and then the response is 
dictated by the first term A1es1t. 

 
Case B : 
α = ω0, ,i.e when (R/2L)2=1/LCs1 and s2are equal which leads to what is called a critically 
damped response given by : 

i (t) = e−αt(A1t + A2) 

 

 
Case C : 
α < ω0,i.e when (R/2L)2<1/LCboth s1 and s2 will have nonzero imaginary components, leading 
to what is known as an under damped responsegiven by : 

 
i (t) = e−αt(A1 cosωd t + A2 sinωd t) 

where ωd is called natural resonant frequency and is given given by: 

ωd   =  √ω02– α2 
Here the constants A1 and A2 have to be calculated out based on the initial conditions case by case 
Summary of the Solution Process: 
In summary, then, whenever we wish to determine the transient behavior of a simple three- 
element RLC circuit, we must first decide whether it is a series or a parallel circuit, so that we 
may use the correct relationship for α. The two equations are 
α = 1/2RC (parallel RLC) 
α = R/2L (series RLC) 
Our second decision is made after comparing α with ω0, which is given for either circuit by 
ω0= 1 /√LC 

 Ifα > ω0, the circuit is over damped, and the natural response has the for 

 

Where fn(t) = A1es1t+ A2es2t s1, 2= −α ±√(α2–ω02) 

 If α = ω0, then the circuit is critically damped and 
 

fn(t) = e−αt(A1t + A2) 
 And finally, ifα < ω0, then we are faced with the underdamped response, 



 
where 

fn(t) = e−αt(A1 cosωd t + A2 
sinωd t) 

 

ωd=√(ω02− α2) 



Solution using Laplace transformation method: In this topic we will study Laplace 
transformation method of finding solution for the differential equations that govern the circuit 
behavior. This method involves three steps: 

 First the given Differential equation is converted into “s” domain by taking it’s Laplace transform 
and an algebraic expression is obtained for the desired variable 

 The transformed equation is split into separate terms by using the method of Partial 
fraction expansion 

 Inverse Laplace transform is taken for all the individual terms using the standard inverse 
transforms. 

The expression we get for the variable in time domain is the required solution. 
 

For the ease of reference a table of important transform pairs we use frequently is given below. 
Table of Important Transform pairs 

 

This method is relatively simpler compared to Solving the Differential equations especially for 
higher order differential equations since we need to handle only algebraic equations in ‘s’ 
domain. 
This method is illustrated below for the series RL,RC and RLC circuits. 

 
Series RL circuit with DC excitation: 
Let us take the series RL circuit with external DC excitation shown in the figure below. 



 
 
 

Fig: RL Circuit with external DC excitation 
The governing equation is same as what we obtained earlier. 

 
V = Ri + Ldi/dt for t >0 

Taking inverse transform of the above expression for I(s)using the standard transform pairs we get the 
solution for i(t) as 

 

i(t)  =  (V/R) − (V/R).e - (R/L)t =   (V/R)(1−e - (R/L)t ) 
Which is the same as what we got earlier by solving the governing differential equation directly. 
RC Circuit with external DC excitation: 
Let us now take the series RC circuit with external DC excitation shown in the figure below. 

 

 

Fig: RC Circuit with external DC excitation 
 

The governing equation is same as what we obtained earlier and is worked out again 
for easy understanding : 

Now we will take Laplace transform of the above equation using the standard Transform pairs and 
rules: 

V/s =   R.C.s.vC(s) + vC(s) 
V/s =  vC(s) ( R.C.s.+ 1 ) 

vC(s)   =   (V/s )/ ( R.C.s + 1 ) 
vC(s)   =   (V/RC )/ [s. (s + 1/RC )] 

Now expanding this equation into partial fractions we get 
vC(s) = (V/RC )/ [s. (s + 1/RC )] = A/s + B/(s + 1/RC ) (1) 



Where A =(V/RC )/ ( 1/RC )] = V and B = (V/RC )/ − ( 1/RC )] = −V 
Substituting these values of A and B into the above equation (1) forvC(s)we get 

 
vC(s) = (V/s) –[V /(s + 1/RC )] = V [(1/s) –{1 /(s + 1/RC )}] 

And now taking the inverse Laplace transform of the above equation we get 
vC(t) = V(1 − e −t/RC ) 

which is the voltage across the capacitor as a function of time and is the same as what we 
obtained earlier by directly solving the differential equation. 
And the voltage across the Resistor is given by vR(t) = V−vC(t) = V−V(1 − e −t/RC ) = V.e − 

 

And the current through the circuit is given by i(t) = C.[dvC(t)/dt] = (CV/RC )e −t/RC =(V/R )e −t/RC 
 

Series RLC circuit with DC excitation: 

 

 

RL circuit with external DC excitation ( Charging Transient ) : 
 

 i(t) = V/R [1− e−t./τ ] 
 

 vL(t) = V (e−t./τ) 

 vR(t) = i(t).R = V [1− e−t./τ ] 
 

Source free RL circuit ( Decay Transients) : 
 

 i(t) = (V/R) . e-t/τ ; vR(t) = R.i(t)= Ve-t/τ and vL(t) = - Ve-t/τ 

 

RC circuit with external DC excitation ( Discharge Transients ): 
 

 vC(t) = V(1 − e −t/RC ) 

 vR(t) = V. e −t/RC 
 

 i(t) = (V/R ) e −t/RC 



Source free RC circuit ( Discharge transients) : 
 

 vC(t) = Ve-t/τ ; vR(t) = -Ve-t/τ and i(t) = vR(t)/R = (-V/R)e- 

t/τ Series RLC circuit: For this circuit three solutions are possible : 

1. α > ω0, i.e when (R/2L)2 >1/ LC , s1 and s2 will both be negative real numbers, leading 
to what is referred to as an over damped responsegiven by : 

i (t) = A1es1t+ A2es2t 

 

2. α = ω0, , i.e when (R/2L)2 =1/ LC s1 and s2 are equal which leads to what is called a 
critically damped response given by : 

i (t) = e−αt(A1t + A2) 
3. α < ω0, i.e when (R/2L)2 <1/ LC both s1 and s2 will have nonzero imaginary 

components, leading to what is known as an under damped response given by : 

1. Voltage across Inductor vL = V –vR 
But it is easier to find using the second method. ∴  vL = 100 -- 100 (1—e—5t ) 

vL = 100. e—5t 
 

(b) At time t= 0.5 secsi(t) = 4 (1–e5 t ) = 4 (1 – e – 2.5 ) = 3.67 Amps 
(c) To find out the time at which the voltages across the Inductor and the Resistor are equal we can equate the 
expressions for vR = 100 (1—e—5t ) and vL = 100.e—5t and solve for t. But the simpler method is, we know that since 
the applied voltage is 100 V the condition vR =vLwill also be satisfiedwhenvR =vL = 50 V. i.e vR = 100 (1—e—5t ) 
= 50 volts and vL= 100.e—5t = 50 V. We will solve the second equation [ vL = 100. e—5t = 50 V ] to get t which is 
easier. 

 

e—5t = 50/100 = 0.5 . 
Taking natural logarithm on both sides we get: 
--5t .ln(e) =   ln 0.5  i.e --5t .1   = -0.693   i.e t = 0.693/5 = 0.139 secs 

∴  The voltages across the resistance and the Inductance are equal at time t = 0.139 secs 

Example 3: In the figure shown below after the steady state condition is reached , at time t=0 the 
switch K is suddenly opened. Find the value of the current through the inductor at time t = 
0.5 seconds. 

 



Solution: The current in the path acdb ( through the resistance of 40 Ω alone) is 100/40 = 
2.5Amps.( Both steady state and transient are same ) 
The steady state current through the path aefb (through the resistance of 40 Ω and inductance of 
4H ) is also = 100/40 = 2.5 Amps. 

 
Now when the switch K is suddenly opened, the current through the path acdb( through the 
resistance of 40 Ω alone) immediately becomes zero because this path contains only resistance. 
But the current through the inductor decays gradually but now through the different path efdce 

The decay current through a closed RL circuit is given by I.e – t / τ where I is the earlier steady 
state current of 2.5 amps through L and τ = L/R of the decay circuit. It is to be noted carefully 
here that in the decay path both resistors are there and hence R =40+40 = 80Ω 
Hence τ= L/R = 4/80 = 0.05 secs 

Hence the current through the inductor at time 0.5 secs is given by i(t) @0.5secs =2.5.e – 0.5 / 0.05 
i.e i(t) @0.5secs = 2.5.e – 10 

i.e i(t) @0.5secs= 1.14x10 – 4 Amps 
Example 4: In the circuit shown below the switch is closed to position 1 at time t = 0 secs. Then at time t = 
0.5 secs the switch is moved to position 2. Find the expressions for the current through the circuit from 0 to 
0. 5 msecs and beyond 0. 5 msecs. 
Solution:The time constant τof the circuit in both the conditions is same and is given by τ = L/R 
= 0.5/50 = 0.01 secs 

 

 

1. During the time t=0 to 0.5 msecs. i(t) is given by the standard expression for growing current 
through a L R circuit: i(t)during 0 to 0.5 msecs = V/R ( 1—e –t / τ ) 

i(t)during 0 to 0.5 msecs = V/R ( 1—e –t / 0.01 ) Amps 
And the current i(t) @ t= 0.5 msecs = 10/50 ( 1-- e – 0.5x10-3 / 0.01 ) = 0.2 (1 – e—0.05 ) = 9.75 mA 

i(t) @ t = 0.5 msecs = 9.75 mA and this would be the initial current when the switch is moved 

to position 2 

2. During the time beyond 0.5 msecs ( switch is in position 2): The initial current is 9.75 mA . 

The standard expression for the growing currenti(t) = V/R ( 1—e –t / τ ) is not applicable now 
since it has been derived with initial condition of i(t) =0 at t=0 where as the initial condition for 
the current i(t) now in position 2 is 9.75 mA . Now an expression for i(t) in position 2 is to be 
derived from first principles taking fresh t=0 and initial current i(0) as 9.75mA. 
The governing equation in position 2 is given by : 

50i+0.5di/dt = 5 



We will use the same separation of variables method to solve this differential equation. Dividing 
the above equation by 0.5, then multiplying by dt and separating the terms containing the two 
variables i and t we get: 
100i + di/dt = 10 i.e 100i.dt +di = 10.dt i.e  di =  dt ( 10 – 100i )  i.e  di/ ( 10 – 100i ) = dt  
Now integrating on both sides we get 

 
--1/100 ln ( 10 -- 100i )   =  t + K ------------- (1)The constant K is now to be evaluated by invoking the new 

initial condition i(t) = 9.75 mAat t =0 
 

--1/100 ln ( 10 – 100x9.75X10--3 )= K = --1/100 ln ( 10 – 0.975 ) = --1/100 ln (9.025) 

Substituting this value of K in the above equation (1) we get 
--1/100 ln ( 10 -- 100i ) = t --1/100 ln (9.025) 

--1/100 ln ( 10 -- 100i ) + 1/100 ln (9.025) = t 
--1/100 [ln ( 10 -- 100i ) -- ln (9.025)] = t 
--1/100 . ln [ ( 10 -- 100i ) / (9.025)] = t 

ln [( 10 -- 100i ) / (9.025)] = --100t 
Taking antilogarithm to base e on both sides we get: 

( 10 -- 100i ) / (9.025)] = e-- 

100t ( 10 -- 100i ) = 9.025 x 

e--100t ( 10 --9.025 x e--100t 
) = 100i 

i = ( 10 --9.025 x e--100t )/ 100 = 10/100 -- 9.025 x e - 100t /100 

 

And finally  i  =  0.1 –0.09. e--100t 

The currents during the periods t = o to 0.5 mses and beyond t = 0.5msec are shown in the figure 
below. Had the switch been in position 1 all through, the current would have reached the steady 
state value of 0.2 amps corresponding to source voltage of 10 volts as shown in the top curve. 
But since the switchis changed to position 2 the current changed it’s path towards the new steady 
state current of 0.1 Amps corresponding the new source voltage of 5 Volts from 0.5 msecs 
onwards. 

 
 

 

Example 5: In the circuit shown below the switch is kept in position 1 upto 250 μsecs and then 
moved to position 2. Find 



(a) The current and voltage across the resistor at t = 100 μsecs 
(b) The current and voltage across the resistor at t = 350 μsecs 

 

Solution : The time constant τ of the circuit is given by τ = L/R = 200mH/8KΩ = 25 μsec and is 
same in both the switch positions. 

 

 

(a) The current in the circuit upto 250 μsec ( till switch is in position 1 ) is given by 

: i(t) growing = V/R (1 – e –t / τ ) = (16/8)X10--3 (1 – e –t / 25 x10--6 ) = 2x(1 – e 
–t / 25 x10 –6) mA 

 The current in the circuit @100μsec is given by 
i(t) @100 μsec = 2x (1 – e –100 μsec / 25 μsec) mA = 2x(1 – e –4) mA = 1.9633 mA 

 
i(t) @100 μsec = 1.9633 m 

 The Voltage across the resistoris given by vR@100 μsec = R x i(t) @100 μsec 
vR@100 μsec = 8 KΩ x1.9633 mA = 15.707 V 

 

vR@100 μsec  =  15.707 V 

(b) (b) 
 

 The current in the circuit @350 μsec is the decaying current and is given by: 
 

i(t)Decaying= I(0).e – t / τ where I(0) is the initial current and in this case it is the growing current 
@250μsec. ( Since the switch is changed @250μsec ) The time t is to be reckoned from this time 
of 250 μsec. Hence t = (350—250) = 100μsec. So we have to calculate first i(t)growing(@250 
μsec)which is given by: 
i(t) growing(@250 μsec) = V/R (1 – e –t / τ ) = (16/8)X10--3 (1 – e –t / 25 μsec) = 2x(1 – e –250/ 25 μsec) 
mA 

=2x(1 – e –10) mA = 1.999 mA 
i(t)growing(@250 μsec)= 1.999 mA = I(0) 

 

Hence i(t)@350 μsec =I(0).e – t / τ = 1.99x e – 100 μsec /25 μsecmA = 1.99x e – 4mA = 0.03663 mA 

i(t)@350 μsec = 0.03663 mA 



 The voltage across the resistor vR @350 μsec = Rxi(t@350 μsec) = 8KΩx0.03663 mA 
vR @350 μsec= 0.293V 

 
Example 6: In the circuit shown below the switch is kept in position 1 up to 100 μ secs and then 

it is moved to position 2 . Supply voltage is 5V DC . Find 

a) The current and voltage across the capacitor at t = 40 μ secs 

b) The current and voltage across the resistor at t = 150 μ secs 

 

 

Solution:The time constant τ of the circuit is same in both conditions and is given by τ = RC = 

40x103x200x10x-12 = 8 μsec 

a) The time t = 40 μsec corresponds to the switch in position 1 and in that condition the 

current i(t) is given by the standard expression for charging current 

i(t) =  (V/R) [e-t/τ ] 

i(t) @40 μsec = 5v/40KΩ [e-40/8 ] Amps = 0.125x[ e-5 ] mA = 0.84224 μA 

i(t) @40 μsec = 0.84224 μA 
 

The voltage across the capacitor during the charging period is given by V [1- e-t/τ 

]. vC(t) @40 μsec = 5[1 -- e-40/8 ] = 5[1 -- e-5 ] = 4.9663 Volts 

vC(t) @40 μsec  = 4.9663 Volts 

Example 9 : In the circuit shown below find an expression for the current i(t) when the switch is 
opened at time t= 0 

 



Solution: The following points may be noted with reference to this circuit: 
 

 When the switch is opened the circuit is equivalent to a normal source free circuit but 
with a current dependent voltage source given as 5i. 

 The initial current I0 when the switch is opened is same as the current when the switch 
was closed for a long time and is given by I0 = 100/(10+10) = 5 Amps 

 
The loop equation when the switch is opened is given by : 

 

(1/4x10—6)∫idt + 10i = 5i 

(1/4x10—6)∫idt + 5i = 0 

Differentiating the above equation we get : 
 

5.(di/dt) + (1/4x10—6)i = 0 i.e. = (di/dt) + (1/20 x 10—6)i = 0 

Writing the above equation in the ‘s’notation where ‘s’ is the operator equivalent to (d/dt) we get 

( s+ 1/20 x 10—6 ) i = 0 and the characteristic equation will be ( s+ 1/20 x 10—6 ) = 0 

The solution i(t) is given by i(t) = K . e–t/20 x 10—6. The constant K can be evaluated by 
invoking the initial condition that i(t) @ t=0is equal to I0 = 5 amps .Then the above equation 
becomes: 

 

5 = K .  e –t/20  x 10—6 i.e K = 5 and hence the current in the circuit when the switch is 

opened becomes: i(t) = 5. e –t/20 x 10—6 Amps 

Example 10: A series RLC circuit as shown in the figure below has R = 5Ω,L= 2H and C = 
0.5F.The supply voltage is 10 V DC . Find 

a) The current in the circuit when there is no initial charge on the capacitor. 
b) The current in the circuit when the capacitor has initial voltage of 5V 
c) Repeat question (a) when the resistance is changed to 4 Ω 

Where vC(t)0 is the initial capacitor voltage when the switch was changed to position 2 

and it is the voltage that has built up by 100 μsec during the charging time (switch in 

position 1 ) and hence is given by 

vC(t)@100μsec = 5[1- e-100/8 ] volts = 5x[1- e-12.5 ] Volts = 4.999 Volts 

And now t=150 μsec from beginning is equal to t = (150-100) = 50 μsec from the time 

switch is changed to position 2. 

Therefore the current through the resistor at 150 μsec from the beginning = i(t)150μsec= 

(4.999/40KΩ). e-t/τ 

i(t)150μsec = 0.1249 x e-50/8 = 0.241 μA 
i(t)150μsec = 0.241 μA 



And the voltage across the resistor = R x i(t) = 40KΩ x 0.241 μA = 0.00964v 
 
 

Example 7: In the circuit shown below find out the expressions for the current i1 and i2 when  

the switch is closed at time t= 0 
 

 
 

Solution: It is to be noted that in this circuit there are two current loops 1 and 2 . Current i1 alone 

flows through the resistor 15 Ω and the current i2 alone flows through the inductance0.5 H where 

as both currents i1 and i2 flow through the resistor 20 Ω. Applying KVL to the two loops taking 

care of this point we get 

20(i1  + i2  ) + 15 i1   =  100 i.e ---------------------------35 i1  + 20 i2 = 100 (1) 
 

and 20(i1 + i2 ) + 0.5 di2/dt = 100 ; 20 i1+ 20 i2 +0.5 di2/dt = 100-- (2) 
 

Substituting the value of i1 = [100/35 – (20/35) i2] = 2.86 – 0.57 i2 obtained from the above 

equation (1) into equation (2) we get : 

20 [2.86 – 0.57 i2] +20i2 + 0.5 (di2/dt) = 100 
 

57.14 – 11.4 i2 +20i2 + 0.5 (di2/dt) = 100 
(di2/dt) i2 +17.14 i2 = 85.7 



The solution for this equation is given by i2(t) = K. e – 17.14t + 85.72/17.14 and the constant K  
can be evaluated by invoking the initial condition. The initial current through the inductor = 0 at 
time t = 0 . 

 
Hence K = -- 85.72/17.14 = -- 5 

 
Therefore i2(t) = 5 ( 1-- e – 17.14t ) Amps 

And current i1(t) = 2.86 – 0.57 i2 = 2.86 – 0.57 [5 ( 1-- e – 17.14t ) ] = 0.01 + 2.85 e – 17.14t Amps 

And current i1(t) = 0.01 + 2.85 e – 17.14t Amps 

Example 8 : In the circuit shown below find an expression for the current i(t) when the switch is 
changed from position 1 to 2 at time t= 0 . 

 

Solution: The following points are to be noted with reference to this circuit: 
 

 When the switch is changed to position 2 the circuit is equivalent to a normal source free 
circuit but with a current dependent voltage source given as 10i. 

 The initial current in position 2 is same as the current when the switch was in position 1 ( 
for a long time ) and is given by I0 = 500/(40+60) = 5 Amps 

 
The loop equation in position 2 is given by : 60i + 0.4 di/dt = 10i i.e ( 50/0.4 )i + di/dt = 0 

Writing the equation in the ‘s’notation where ‘s’ is the operator equivalent to (d/dt) we get ( 

s+ 125 ) i = 0 and the characteristic equation will be ( s+ 125 ) = 0 

Hence the solution i(t) is given by i(t) = K . e--125t. The constant K can be evaluated by 
invoking the initial condition that i(t) @ t=0 is equal to I0 = 5 amps .Then the above equation 
becomes: 

 

5 =  K . e—125X0 i.e K = 5 and hence the current in the circuit when the switch is 

changed to position 2 becomes: i(t) = 5. e--125t Amps 

 
d) Repeat question (a) when the resistance is changed to 1 Ω 



 
 
 

Solution: The basic governing equation of this series circuit is given by : 

Ri + 1/C∫ ��� + L. (di/dt)= V 
On differentiation we get the same equation in the standard differential equation 

form 
L(d2i/dt2)+ R(di/dt)+ (1/C)i = 0 

 
By dividing the equation by L and using the operator ‘s’ for d/dt we get theequation in the 
form of characteristic equation as : 

[s2 + (R/L)s + (1/LC)]  = 0 
 

Whose roots are given by: 

s1,s2 =− R/2L±√[(R/2L)2− (1/LC)]= −α ±√(α2– ω02) 

and three types of solutions are possible. 
1. α > ω0, i.e when LC > (2L/R)2 s1 and s2 will both be negative real numbers, leading to 

what is referred to as an over damped responsegiven by : 
i (t) = A1es1t+ A2es2t 

2. α = ω0, , i.e when LC = (2L/R)2 s1 and s2 are equal which leads to what is called a 
critically damped responsegiven by : 

i (t) = e−αt(A1t + A2) 
3. α < ω0, i.e when LC < (2L/R)2 both s1 and s2 will have nonzero imaginary components, 

leading to what is known as an under damped responsegiven by : 
 

i (t) = e−αt(A1 cosωd t + A2 sinωd t) 
whereωdis called natural resonant frequency and is given given 

by: 

ωd   =  √ω02– α2 
The procedure to evaluate the complete solution consists of the following steps for each part of 
the question: 

1. We have to first calculate the roots for each part of the question and depending on to 
which case the roots belong we have to take the appropriate solution . 

2. Then by invoking the first initial condition i.e i = 0 at t=0 obtain the first relation 
between A1 and A2or one of its values. 

3. If one constant value is obtained directly substitute it into the above solution and take its 
first derivative. Or else directly take the first derivative of the above solution 



4. Now obtain the value di/dt @ t= 0from the basic RLC circuit equation by invoking the 
initial conditions of vC@ t=0 and i(t) @ t=0 . Now equate this to the differential of the 
solution for i(t) to get the second relation between A1 and A2( or the second constant . 
Now using these two equations we can solve for A1 and A2 and subsititute in the solution 
for i(t) to get the final solution. 

 
(a) s1,s2 = − R/2L±√[(R/2L)2− (1/LC)] = (-5/2x2)±√[(5/2x2)2 – (1/2x0.5)] = -1.25 ± 0.75. 
i.e. s1 = --0.5 and s2 = --2 

 
In this case the roots are negative real numbers and the solution is 
given by : i (t) = A1es1t+ A2es2t= A1e-0.5t+ A2e-2t (1) 
Now we will apply the first initial condition i.e i(t) = 0 at t=0 .Then we get 
0  = A1e-0.5x0+ A2e-2x0 i.e. A1+ A2 = 0 

The basic equation for voltage in the series RLC circuit is 

given as : V = R.i(t) + vC(t) + L.(di/dt) i.e di/dt = 1/L [ V - 

R.i(t) - vC(t) 
At time t=0 we get 

(di/dt)@ t=0 ---------------------------------------------= 1/L [ V -R.i(t=0) - vC(t=0) ] 
(2) 

But we know that the voltage across the capacitor and current are zero at time t=0 . 
Therefore   (di/dt)@ t=0   =  V/L   =  10/2 = 5 ------- (3) 

 
Now the equation for i(t) at equation (1) is differentiated to get 
(di/dt) = -0.5A1e-0.5t-2A2e-2t 
and the above value of (di/dt)@ t=0 = 5 is substituted in that to get the second equation with A1 and A2 
(di/dt)@ t=0 = 5  =  -0.5A1e-0.5x0-2A2e-2x0 = -0.5A1 2A2 
Now we can solve the two equations for A1 and A2 

 
A1+ A2   = 0 and -0.5A1--2A2   = 5  to get A1   = 10/3 and A2   = 10/3 

 
And the final solution for i(t) is : (10/3)[e-0.5t– e-2t ] Amps 

 
(b) At time t=0 the voltage across the capacitor = 5V ie. vC(t=0) = 5V . But i(t=0) is still 
=0.using these values in the equation (2) above we get 
(di/dt)@ t=0 = ½ (10-5 ) = 2-5 
Then the two equations in A1  and A2   are A1+ A2   = 0 and - 
0.5A1--2A2 =2.5 Solving these two equations we get A1 = 5/3 and A2 
= -5/3 

And the final solution for i(t) is : (5/3)[e-0.5t– e-2t ] Amps 
 

(c) The roots of the characteristic equation when the Resistance is 

changed to 4 s1,s2 = − R/2L±√[(R/2L)2− (1/LC)] = (-4/2x2) ±√[(4/2x2)2 
– (1/2x0.5)] = -1.0 
i.e the roots are real and equal and the solution is given by 



i (t) = e−αt(A1t + A2) = e−1t(A1t + A2)-(4) 
Now using the initial condition i(t) = 0 at time t=0 we get A2 = 0 
We have already found in equation (3) for the basic series RLC circuit (di/dt)@ t=0 = 5Now we will find 
di(t)/dt of equation (4) and equate it to the above value. di /dt = -e−1t(A1t + A2) + e−1t (A1) = e−1t [A1 – A1t 
–A2] and 
(di /dt) @t=0= e−1x0 [A1 – A1x0 –A2] i.e A1 – 
A2 = 5 Therefore A1 =5 and A2 = 0 

And the final solution for i(t) is i(t) = 5te−1tAmps 
 

(d) Roots of the characteristic equation when the resistance is changed to 1 Ω are : 

s1,s2 = − R/2L±√[(R/2L)2− (1/LC)] = (-1/2x2) ±√[(1/4)2 – (1/2x0.5)] = --0.25 ±j0.94 

The roots are complex and so the solution is then given by : i (t) = e−αt(A1 cosωd t + A2 sinωd t) 
Where α = 0.25 and ωd= 0.9465 
Now we will apply the initial conditions to find out the constants A1 and A2 
First initial condition is i(t)@t=0 = 0 applying this into the equation : i (t) = e−αt(A1 cosωd t 
+ A2 sinωd t) we get A1 = 0 and using this value of A1 in the abve equation for i(t) we get 
i (t) = e−αt(A2 sinωd t) 
We have already obtained the second initial condition as di (t) /dt@t=0= 5 from the basic 
equation of the series RLC circuit. Now let us differentiate above equation for current i.e :i (t) = 
e−αt(A2 sinωd t) and equate it to 5 to get the second constant A2 
di (t) /dt = e−αt(A2 ωd cos ωd t) + (A2 sinωd t) 
. –α. e−αt di (t) /dt @t=0 =A2. ωd= 5 
i.e A2 = 5 / ωd = 5/0.94 = 5.3 
Now using this value of A2 and the values of α = 0.25 and ωd = 0.94in the above expression for 
the current we finally get : 

i (t) = e−0.25t(2.569 sin 1.9465t) 
 

The currents in all the three different cases (a), (c) and (d) are shown below 
 
 
 
 
 



MODULE-V 

Network Synthesis 

 
Hurwitz Polynomial: 

A polynomial p(s) is said to be Hurwitz if all the roots of p(s) are located in the open left 

half (LH) s-plane (not including the imaginary axis). 

Let p(s) be the polynomial in question. Assume first that p(s) is neither an even nor an odd 

polynomial. To test whether such a polynomial p(s) is indeed a Hurwitz polynomial, we may 

use the Hurwitz test. 

 First  decompose  p(s)  into  its  even  and  odd  parts,  M(s)  and  N(s),respectively, 

as p(s) = M(s) +N(s).

Using M(s) and N(s) we form  the  test  ratio  T(s),  whose  numerator  has  higher degree  than 

that of its denominator. Suppose that p(s) is a polynomial of degree d. Then Let p(s) be the 

polynomial in question. Assume first that p(s) is neither an even nor an odd polynomial. To test 

whether such a polynomial p(s) is indeed a Hurwitz polynomial, we may use the Hurwitz test. 

 First  decompose  p(s)  into  its  even  and  odd  parts,  M(s)  and  N(s),respectively, 

as p(s) = M(s) +N(s).

 Using M(s) and N(s) we form   the   test   ratio   T(s),   whose   numerator   has   higher 

degree than that of its denominator. Suppose that p(s) is a polynomial of degree

d. Then 
 

 
 

 Next, we perform the continued fraction expansion about infinity on the testratio 

T(s), removing one pole at a time in the form of a quotient qs, resulting in:



 
 

Where qis is the ith quotient, and qi, is the associated coefficient. 

 If there is one  or  more  quotients  with  negative  coefficients,  then  p(s)  isneither 

a Hurwitz nor a modified Hurwitz polynomial.

 On the other hand, if there are d quotients (d = d
^
) and every quotient has appositive 

coefficient, then p(s) is a Hurwitz polynomial.

 Finally, if the number of quotient d
^ 

is less than d but every quotient has appositive 

coefficient, this means that there is a common factor k(s) between M(s) and N(s). 

Hence, we can write p(s)as:
 

Because all the d
^ 

quotients of T(s) have positive coefficients, the polyno- mial p(s) in 

(4-10) is Hurwitz. Thus, if k(s) is a  modified  Hurwitz polynomial [i.e., if all the  

roots of k(s) are simple and purely imaginary], then p(s) is a modified Hurwitz 

polynomial. 

 
 A procedure to determine if  k(s)  is  a  modified  Hurwitz  polynomial  isdescribed 

in the following in conjunction with the case when p(s) is either an even or an odd 

polynomial.

 Suppose now that p(s) is either an even or an odd polynomial of degree d. is 

amodified Hurwitz polynomial if and only if p(s) has only simple and imaginary axis 

roots (including the origin).
 

 To determine if p(s) is a modified Hurwitz polynomial, we form atest ratio

^ 
T (s): 

 

And perform the continued fraction expansion about infinity on T
^
(s), as in (4- 9). 

Then p(s) is a modified Hurwitz polynomial if and only if there are d quotients in the 

expansion and each quotient has a positive coefficient. 

 In the case when p(s) is either an even or an odd polynomial, if there is one ormore



negative coefficient in the continued fraction expansion of T^(s), then p(s) has a  

RH s-plane root; and if all coefficients are positive but there are only d^ < d 

quotients, then all roots of p(s) are on the imaginary axis of the s-plane, but p(s)  

has non-simple or multiple roots. Either  situation implies that p(s) is not a  

modified Hurwitz polynomial. 
 
 
 
 

 

 
Routh–Hurwitz stability criterion: 

A tabular method can be used to determine the stability when the roots of a 
higher order characteristic polynomial are difficult to obtain. For an nth-
degree polynomial 

 
 

the table has n + 1 rows and the following structure: 
 
 

    
 



  
 

 
 

 
 

  

 

 

 
 

 

    
 

    
 

Where the elements  and can be computed as follows: 

 
 

 

When completed, the number of sign changes in the first column will be the 
number of non- negative poles. 

 
In the first column, there are two sign changes, thus there are two non-
negative  roots where the system is unstable. Sometimes the presence of 
poles on the imaginary axis creates a situation of marginal stability. The row of 
polynomial which  is just above the row containing the zeroes is called 
"Auxiliary Polynomial". 

 

We have the following table: 
 

1 8 20 16 

2 12 16 0 

2 12 16 0 

0 0 0 0 

In such a case   the   Auxiliary polynomial   is 
which is again equal to zero. The next step is to differentiate the above 

equation which yields the  following  polynomial.       . 
The coefficients of the row containing zero now become "8" and "24". The 
process of Routh array is preceded using these values which yield two points 
on the imaginary axis. These two points on the imaginary axis are the prime 
cause of marginal stability. 

Properties of Positive Real Function: 

 
 The sum of two PR functions is PR. 
 The composition of two PR functions is PR. In particular, if Z(s) is PR, then so 

are 1/Z(s) and Z(1/s). 



 All the poles and zeros of a PR function are in the left half plane or on its 



boundary the imaginary axis. 
 Any poles and zeroes on the imaginary axis are simple (have a multiplicity of one). 
 Any poles on the imaginary axis have real strictly positive residues, and 

similarly at any zeroes on the imaginary axis, the function has a real strictly 
positive derivative. 

 Over the right half plane, the minimum value of the real part of a PR function 
occurs on the imaginary axis (because the real part of an analytic function 
constitutes harmonic over the plane, and therefore satisfies the maximum 
principle). 

 For a rational PR function, the number of poles and number of zeroes differ by 
at most one 

LC Network Synthesis 

If a network contains only inductors and capacitors, it is called a pure reactive network. In pure 

reactive network, the average power dissipated is zero so that it is called lossless network. 

Therefore, the real part of the impedance/admittance function is zero for pure imaginary 

frequency, s = jω. Consider a deriving-point impedance function Z(s). 

Re[Z(jω)] = 0 
Let Z(s) be written as follows: 

Where, M and N are even and odd parts respectively. 

Re[Z(jω)] = 0 

 M1(jω)M2(jω) – N1(jω)N2(jω) =0 
 M1 = 0 = N2 Or M2 = 0 =N1 

 

 

 Z(s) is always even to odd (Ne(s)/Do(s)) or odd to even (No(s)/De(s)) 
quotient ofpolynomials. 

 Since N and D are either even or odd polynomials, all poles and zeros of Z lie on 
the jω – axis 

 Z has pole at zero (when Z(s) = Ne(s)/Do(s)) or zero at zero (when Z(s) =No(s)/De(s)) 
 Degrees of N and D differ exactly byone. 
 Z has pole at infinity (if Deg N > Deg D) or zero at infinity (if 

Deg N < DegD) In general, Z(s) can be written asfollows: 
 

 
ωz1 = 0 if Z has zero at s 

= 0 The general partial fraction expansion will be: 

The first term exists Z has pole at s = 0, and the last term exists if Z has pole at infinity. Since 
Re[Z(jw)] 



= 0 

Z(jω) = jX(ω) the imaginary part X(ω) is called the reactance function. 

X (ω) is an odd function. 

X (ω) has a positive slope where the minimum slope is H. Therefore, poles and 
zeros are interlaced. 

 

a) When Z has zero at s =0 
 

 

 
 

Definition: 

 Poles and zeros of Z(s) are collectively known as critical frequencies 
 Poles and zeros located at zero and infinity are called external critical frequencies. 
 All other poles and zeros are known as internal 

critical frequencies. Summary: 

Z(s) 
 Has only simple poles and zeros all interlaced on the jω –axis. 
 Is a quotient of even and odd polynomials? (Ne(s)/Do(s) or No(s)/De(s)) 



 has a zero (No/De) or pole (Ne/Do) at s = 0 
 has a zero (Deg N < Deg D) or pole (Deg N > Deg D) at infinity 
 can be completely and uniquely specified by its internal critical frequencies 

and H All above properties also apply for the deriving-point admittance function 

Y(s) Realization of LC Networks: 

There are four canonical forms: 

 Foster Forms 
 Foster-1: partial fraction expansion at poles ofZ(s) 
 Foster-2: partial fraction expansion at poles ofY(s) 
 Cauer Forms 
 Cauer-1: Continued fraction expansion about infinity (successive removal 

of pole atinfinity) 
 Cauer-2: Continued fraction expansion about the origin (successive removal 

of pole atzero) 
 
 
 
 
 
 
 
 
 
 

Foster Realizations: 

Foster-1: 
 

 
 

Definition: 

 Poles and zeros of Z(s) are collectively known as critical frequencies 
 Poles and zeros located at zero and infinity are called external critical frequencies. 
 All other poles and zeros are known as internal 

critical frequencies. Summary: 

Z(s) 
 Has only simple poles and zeros all interlaced on the jω –axis. 
 Is a quotient of even and odd polynomials? (Ne(s)/Do(s) or No(s)/De(s)) 



 has a zero (No/De) or pole (Ne/Do) at s = 0 
 has a zero (Deg N < Deg D) or pole (Deg N > Deg D) at infinity 
 can be completely and uniquely specified by its internal critical frequencies 

and H All above properties also apply for the deriving-point admittance function 

Y(s) 

 
 

Realization of LC Networks: 

There are four canonical forms: 

 Foster Forms 
 Foster-1: partial fraction expansion at poles ofZ(s) 
 Foster-2: partial fraction expansion at poles ofY(s) 
 CauerForms 
 Cauer-1: Continued fraction expansion about infinity (successive removal 

of pole atinfinity) 
 Cauer-2: Continued fraction expansion about the origin (successive removal 

of pole atzero) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Foster Realizations: 

Foster-1: 
 



 

 
Foster-2: 
Cauer Realizations 

Removal of pole at zero or infinity leaves a remainder function that has zero at zero or 

infinity respectively. This zero can be removed as a pole of the reciprocal function. 

Similarly, removal of pole from the reciprocal leaves another remainder function that has 

zero at that frequency. Repeated application of this process gives continued fraction 

expansion of the deriving point impedance or admittance function. This expansion can 

be realized as a ladder network. 

If the deriving-point function is H(s), its PFE will be: 
 

 

 
If H(s) impedance function 

 

If H(s) is admittance function 

 

Cauer- 1: obtained by continued removal of pole at infinity. Cauer-1 form of H(s) will be: 



 

 
Cauer- 2: obtained by continued removal of pole at zero. Cauer-2 form of H(s) will be: 

Example 2 

Given the following LC impedance function. 
 

 
 

a) PlotX(ω) 

b) Find the two Foster and two Cauer realizations ofZ(s). 
 

Solution: 

a) 
 

 

 

Poles: ω = 1, 

√3 Zeros: ω = 

0, √2, 
 



∞ H = 1 

b) 

Foster –1 

 
 

 

 

Foster –2 
 

 
Cauer – 1 pole removal at infinity 



 

 
 

Note: Z(s) does not have pole at infinity. Therefore, we take Y(s) since it will have pole at infinity. 
 

 
 
 

 Cauer – 2 Pole removals atzero 
 

 
Z(s) does not have pole at the origin. Therefore, we take Y(s) since it will have pole at zero. 

 
 

RC and RL Networks 

RC Networks 

An RC-network is built from resistors and capacitors so that it can be taken as interconnection of 

smaller networks shown below.Where R = 0 (short circuited) if the sub network contains only a 
 

capacitor and c = ∞ (short circuited) if the sub network contains only a resistor. Therefore, the 



general impedance function of a sub network can be written as: 

ZRC(s) = Ri + 1/Cis = A + 1/Bs 
Similarly, an LC-network is built from sub networks of the form shown below. 

Where L = 0 (short circuited) when there is no inductor and C = ∞ when there is no capacitor. The 

general impedance function of such sub network can be written as: 
ZLC(s) = Lis + 1/Cis = αs + 1/βs 

 
Let us substitute s with p 

ZLC(p) = αp + 1/βp 

 

This transformed function has the same form as the RC-network impedance function so that the 

general RC-network impedance function can be obtained from the general LC-network 

 
impedance function. 

Similarly, the admittance function can be obtained from reciprocal of the impedance function. 
 

 

Case 1: ZLC has pole at s = 0 

 
a) When Deg N = Deg D +1 

 Pole at∞ 
 Highest critical frequency is a pole at infinity 
 Highest internal critical frequency is a zero 

b) When Deg N +1 = Deg D 

 Highest critical frequency is a zero at infinity 
 Highest internal critical frequency is a pole 

 



The first critical frequency is a pole at zero 

►  Lowest critical frequency is apole 

Poles and zeros are simple and lie on the negative real axis 

►  Poles and zerosinterlace 

a) When Deg N = Deg D +1 

 Deg N2 = DegD2 
 No pole atinfinity 
 Highest critical frequency for ZRC is azero 

b) When Deg N +1 = DegD 

 Deg N2 < DegD2 
 A zero atinfinity 
 Highest critical frequency is 

azero. Case 2: ZLC has zero at s =0 

 
 

 

 
 

 The first critical frequency is a pole atβ1 
 Lowest critical frequency is apole 
 Poles and zeros are simple and lie on the negative realaxis 
 Poles and zerosinterlace 

a) When Deg N = Deg D +1 

 Deg N2 = DegD2 
 No pole atinfinity 
 Highest critical frequency for ZRC is azero 

b) When Deg N +1 = DegD 

 Deg N2 < DegD2 
 A zero atinfinity 
 Highest critical frequency is azero. 

Note that poles and zeros of ZRC(s) are zeros and poles of YRC(s) respectively. 

Summary: 

 Poles and zeros are simple and lie on the negative real frequencyaxis. 
 Poles and zerosinterlace 
 Highest critical frequency is a zero for ZRC and a pole forYRC 
 Lowest critical frequency is a pole for ZRC and a zeroYRC. 



 Deg N < Deg D for Z and Deg N > 

Deg D forY. Ingeneral, 

 
 
 
 
 
 
 
 
 
 
 
 
 

  has a negative slope along the real frequency axis. Moreover, ZRC(s) has no poles 

and zeros on the positive real frequency axis as it is a positive realfunction. 

is monotically decreasing from = 0 to∞. 
 Z(0) >Z(∞) 
 Y(0) <Y(∞). 

 

Recall: 
 
 

The residues at poles of ZRcand YRc /s are real and positive. 
 
 

RL Networks 

ZRL(s)=Ri+Lis=A+Bs 



School of Computing and Electrical 

Engineering2010 Similarly, forLC-network 

ZLC(s) = Lis + 1/Cis = αs + 1/βs 
Let us s with p 

 

This transformed function has the same form as the RL-network impedance function so that the 

general RL-network impedance function can be obtained from the general LC-network impedance 

function. 

 

Since the impedance and admittance functions of LC networks have similar characteristics, and 

hence similar forms, we can substitute ZLC with YLC in the above transformation. 

This is similar toYRC 

Similarly, the admittance function can be obtained from reciprocal of the impedance function. 

 

Conclusion: 

 Deriving-point RC-impedance and RL-admittance functions have similar forms, and 

hence similar characteristics. 

 Deriving-pointRC-admittanceandRL-impedancefunctionshavesimilarforms,andhence 

Similar characteristics. 



Foster realization of RC networks 

Foster – 1 

 
 

Foster – 2 



 

 

Foster realization of RL networks 

Recall that 

 Deriving-point RC-impedance and RL-admittance functions have similar 

forms, and hence similarcharacteristics. 
 Deriving-pointRC-admittanceandRL-impedancefunctionshavesimilarforms,andhence 

similar characteristics. 
Foster – 1 

 



Foster – 2 

Example 3 

Find Foster – 1 and Foster – 2 realization of the following deriving-point function. 
 
 

 
 
 

Solution: 
F – 1 

 

 



F – 2 

 
 

 

 
 
 
 

Cauer Realization of RC and RL deriving-point impedance function 

Cauer realization of a deriving – point function is obtained by Continued Fraction 

Expansion of the function about the highest or lowest degrees of both the numerator and 

the denominator polynomials. 

For LC deriving-point functions, highest and lowest degrees of the numerator are always 

deferent (by one) from the highest and lowest degrees of the denominator respectively 

so that division about the highest or lowest degrees always gives a quotient polynomial 

of the form αs or 1/αs that removes a pole at infinity or at zero respectively. Therefore, 

Cauer realization of LC deriving – point functions is obtained by continued removal 

ofpoles. 

On the other hand, RC and RL deriving – point functions (N(s)/D(s)) can have both 

numerator and denominator polynomials of the same degree. In this case, division about 

the highest or lowest degrees gives a constant quotient that removes a constant from the 

deriving - point function. But to remove a constant from the deriving – point function, the 

constant must be less than or equal to the minimum of the function. Therefore, it should 



be known whether from the 



impedance or admittance a constant can be 
removed. Recall the following properties. 
ZRC(0) > ZRC(∞) ►YRL(0) > YRL(∞) since ZRC and YRL have similar 

ZRC and YRLhave minimum values at infinity (∞) so that a constant can be removed 
duringCauer-1 realization (continued fraction expansion about infinity). 

YRC and ZRLhave minimum values at zero (0) so that a constant can be removed during Cauer-

2 realization (continued fraction expansion about zero). 

Cauer – 1 realization 

For RC networks use the impedance function, ZRC, and for RL network use the 
admittance function, YRL. 

 
Deg N(s) < Deg D(s) ►No pole at 

infinity Case 1: Deg N = Deg D 

Since these functions have minimum values at infinity, a constant can be removed by 

division about infinity (highest degrees). This leaves a remainder function whose 

numerator has a degree less that the denominator, and hence has zero at infinity. This 

can be removed as a pole from the reciprocal. Now the second remainder function will 

have both numerators and denominators of the same degree. Now a constant (at infinity) 

cannot be removed from these functions! But a constant (at infinity) can be removed 

from the reciprocal since it has a minimum at infinity. 
Let us assume the function is ZRC (the same conclusion can be reached for YRL). 
A constant at infinity can be removed from ZRC not YRC. Now after a constant is 

removed from Z, the remainder Z2 will have a numerator with its degree less than degree 

of the denominator so that Z2 will have zero at infinity. This implies that Y2 = 1/Z2 has a 

pole at infinity. After a pole is removed from Y2, the remainder Y3 will again have 

numerator and denominator with the same degree. Since a constant (at infinity) cannot 

be removed from YRC (and ZRL) we take the reciprocal of Y3 (Z3) and remove a 

constant. The expansion continues by applying the same process. 

Cauer – 1 form of ZRC and YRL will be as shown below. 
 
 

Case 2: Deg N < Deg D zero at infinity 

In this case there is no constant removal at infinity (the function becomes zero at infinity) 

so that the expansion starts from the reciprocalfunction. 



 
 

 
 
 

Cauer – 2 realizations 

For RC networks use the admittance function, YRC, and for RL network use the 
impedance function, 

 

ZRL. 

These functions have minimum values at zero so that a constant about the origin (at 

zero) can be removed by dividing about the lowest degrees. 

Case 1: zero at s = 0 
No constant removal at zero since the function becomes zero at s = 0. However, the 

reciprocal will have pole at zero. This pole is removed first and the remainder will have 

no pole at zero anymore. Now a constant at zero is removed from the reciprocal. 

Removal of a constant at zero leaves another remainder which has zero at s = 0 (since 

the constant is already removed). Therefore, a pole at zero is removed from reciprocal of 

this function. The expansion continues by following the same procedure. 

 
 
 
 
 
 
 

 
Finally, Caurer-1 form of such function will be as shown 

below. Case 2: no zero at s = 0 

In this case a constant at zero is removed first. 



 
 

Example 5 

Realize the following RL deriving-point function using Cauer – 1 and Cauer – 2 
 

Solution: 

ZRL(0) <ZRL(∞) 
YRL(∞) <YRL(0) 

For Cauer – 1 (Continued Fraction Expansion about infinity), 

use YRL For Cauer – 2 (Continued Fraction Expansion 

about the origin) use ZRL Cauer – 1 

 

Deg N < Deg D 

 No pole or constant removal atinfinity 
 Start from the reciprocal function(ZRL) 

 

Cauer – 2 



 

 

 
 

 No zero at zero 
 

A constant can be removed at zero. 
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Code:80203 
MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) 

II B.Tech I Semester I Mid Question Bank 2019-20 
Subject:ECAS Branch: EEE 
Name of the Faculty: Y Sudha  

 

MODULE-I 
1. Find Thevenins Equivalent circuit for the following circuit 

 

2. State and Explain Nortons theorem and Tellegens theorem? 
3. Proof Rth=RLfor Maximum power transfer theorem 
4. Solve this network and find current passing 3Ω using superposition theorem. 

 

5. Two coils of number of turns N1=1000,N2=400 respectively are placed near each other.They 
are magnetically coupled in such away that 75% of flux produced by one of 1000 turns links 
other.A current of 6amp produces a flux of 0.8mwb in N1 and same amount of current produces a 
flux of 0.5mwb in the coil of N2 turns.Determine L1,L2,M & K for coils? 
6. Define composite Magnetic circuit? Explain about Parallel magnetic circuit with neat 
diagram?s 

MODULE-II 
1. Explain about parallel resonance and derive Bandwidth and quality Factor for it? 
2. Explain about the three phase systems and advantages of three phase system? 
3. Explain about representation of a three phase system for line and phase voltages and currents 

in a star connection for a balanced system? 
4. A rms line voltage in a three phase start circuit is given by 213V(P-N).Write the 

instantaneous voltage expression.If the currents in each phase lag the corresponding phase 
voltages by 30° ,What are the expressions of intantaneous currents? 
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5.  Explain   how   three   phase   power   is measured  using Two Wattmeter method with 
corresponding equations and diagram. 

6. A Three phase 440V load has a power factor of 0.4.The two wattmeters are connected to 
measure the power.If theinput power be 10KW find the reading of each instrument? 

MODULE-III 
1. Explain briefly about Z-parameters with relevant equations and diagrams. 

2. Explain and derive Y-parameters with relevant equations? 

3. Determine Z-parameters for the following circuit 
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MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) 
B.Tech– II YEAR I Sem (MR 18) 

II Mid Examination Subjective Question Bank 

 
Subject:ECAS Branch:EEE 

Name of the faculty: Y SUDHA 

Instructions: 

1. All the questions carry equal marks 

2. Solve all the questions 
 

Module III 

 
Q.No. 

 
Question 

Bloom’s 
Taxonomy 

Level 

 
CO 

1. Solve the h-parameters of the network shown in figure. 

 

Applying 3 

OR 

2. lve ABCD parameters for the following circuit. 

 

Applying 3 

3. List the Relationship between Z parameter interms of Y,ABCD 
& H parameters. 

Analyzing 3 

OR 

 
 
 
 
 
 

 
10 



4. Examine the Y-Parameter foe the network shown in figure. 
 

 

Analyzing 3 

Module IV 

1. Explain the DC response of an RL series circuit with intital 

conditions using laplace transforms. 

Understandin
g 

4 

OR 

2. A series RLC circuit shown below comprising 

R=10Ω,L=0.5H,C=1µF is excited by a constant voltage source 

of 100V. Determine the expression for the current.Assume the 

expression for the current.Assume that the circuit is relaxed 

initially. 

 

 
 

Evaluating 4 

3. Explain the DC response of an RLC series circuit with intital 

conditions using laplace transforms. 

Understandin
g 

4 

OR 

4. Explain the Sinusoidal response of an RL series circuit with 

intital conditions using laplace transforms. 
Understandin

g 

4 

5. Explain the Sinusoidal response of an RC series circuit with 
intital conditions using laplace transforms. 

Understandin
g 

4 

OR 

6. Explain the step response of an RL and RC parallel sinusoidal 
circuits. 

Understandin
g 

4 

7. Explain the DC response of an RC series circuit with intital 
conditions using laplace transforms. 

Understandin
g 

4 

OR 

8. For the circuit shown in figure . Examine the complete Analyzing 4 

 

10 



 expression for the circuit when the switch is closed at t=0 
 

 

 

  

Module V 

1. plain about the synthesis of R-L circuit by cauer method with an 
example. 

Understandin
g 

5 

OR 

2. Illustrate the polynomial P(s) = s4+3s2+2 is Hurwitz or not. Understandin
g 

5 

3. e driving point impedance of an LC network is given by Z(s)= 
2s5+12s3+16s . Determine cauer first form of network. 

+4s2+3 

Evaluating 5 

OR 

4. lve whether the polynomial P(s) = s4+s3+3s2+2s+12 is Hurwitz. Applying 5 

5. Simplify the first Foster form of the driving point function of 
Z(S)=2(S+2)(S+5)/(S+4)(S+6) 

Analyzing 5 

OR 

6. Explain about Synthesis of Reactive one-Ports by Fosters 
method. 

Understandin
g 

5 

7. Explain about Synthesis of Reactive one-Ports by Cauer method. Understandin
g 

5 

OR 

8. Simplify the tow Cauer realisations of driving point function 
given by Z(S)=(10S4+12S2+1)/2S3+2S. 

Analyzing 5 

 
 

Signature of the Faculty Signature of the HoD 
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MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS) 
 

B.Tech– II YEAR I Regular Examinations (MR 18) 
Model Question Bank 

 
 

Name of the Subject:ECAS Branch:EEE 

Name of the faculty: Y SUDHA 

 
Q.No. 

 
Question 

Bloom’s 
Taxonomy 

Level 

 
CO 

1. illustrate Thevenins Equivalent circuit for the following circuit 

 

 
 

Understanding 1 

OR 

2. Two coils of number of turns N1=1000,N2=400 respectively are 
placed near each other.They are magnetically coupled in such 
away that 75% of flux produced by one of 1000 turns links 
other.A current 0f 6Amp produces the flux of 0.8 mwb in N1 and 
same amount of current produces of flux of 0.5mwb in the coil of 
N2 turns.Determine L1,L2,M and K for coils? 

Understanding 1 

3. plain about parallel resonance and derive Bandwidth and quality 
Factor for it? 

Understanding 2 

OR 

4. plain about representation of a three phase system for line and 
phase voltages and currents in a star connection for a balanced 
system? 

Understanding 2 

5. a)Choose Z-parameters with relevant equations and diagrams 
 

Solve Z-parameters for the following circuit 

Applying 3 
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OR 

6. Solve the series and parallel Interconnection of two port network Applying 3 

7. Derive the DC response of an RC series circuit with initial 

conditions by applying laplace transform? 

Analyzing 4 

OR 

8. A 50KZ 400V(Peak value) sinusoidal voltage is applied at t=0 to 

a series RL circuit having resistance 5ohms and inductance 

0.2H.Obtain the expression for current at any instant “t”Examine 

the value of the transient current 0.01sec after switching on? 

Analyzing 4 

 

9 e   Driving   point   impedance   of   an LC network   is given 
byZ(S)=(S4+4S2+3)/(S3+2S).Determine the Second Cauer Form 
of the network? 

Evaluating 5 

OR 

10 plain about Synthesis of Reactive one-Ports by Fosters method? Evaluating 5 

 
 

Signature of the Faculty Signature of the 
HoD 
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